Distinct Functional Organizations for Processing Different Motion Signals in V1, V2, and V4 of Macaque

Motion perception is qualitatively invariant across different objects and forms, namely, the same motion information can be conveyed by many different physical carriers, and it requires the processing of motion signals consisting of direction, speed, and axis or trajectory of motion defined by a moving object. Compared with the representation of orientation, the cortical processing of these different motion signals within the early ventral visual pathway of the primate remains poorly understood. Using drifting full-field noise stimuli and intrinsic optical imaging, along with cytochrome-oxidase staining, we found that the orientation domains in macaque V1, V2, and V4 that processed orientation signals also served to process motion signals associated with the axis and speed of motion. In contrast, direction domains within the thick stripes of V2 demonstrated preferences that were independent of motion speed. The population responses encoding the orientation and motion axis could be precisely reproduced by a spatiotemporal energy model. Thus, our observation of orientation domains with dual functions in V1, V2, and V4 directly support the notion that the linear representation of the temporal series of retinotopic activations may serve as another motion processing strategy in primate ventral visual pathway, contributing directly to fine form and motion analysis. Our findings further reveal that different types of motion information are differentially processed in parallel and segregated compartments within primate early visual cortices, before these motion features are fully combined in high-tier visual areas.

[1]  M. Hawken,et al.  Laminar organization and contrast sensitivity of direction-selective cells in the striate cortex of the Old World monkey , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[2]  Chang'an A Zhan,et al.  Boundary cue invariance in cortical orientation maps. , 2006, Cerebral cortex.

[3]  Eero P. Simoncelli,et al.  A model of neuronal responses in visual area MT , 1998, Vision Research.

[4]  G. Orban,et al.  Speed and direction selectivity of macaque middle temporal neurons. , 1993, Journal of neurophysiology.

[5]  John Ross,et al.  Visual processing of motion , 1986, Trends in Neurosciences.

[6]  T. Wiesel,et al.  Functional architecture of cortex revealed by optical imaging of intrinsic signals , 1986, Nature.

[7]  Stephen D. Van Hooser,et al.  Experience with moving visual stimuli drives the early development of cortical direction selectivity , 2008, Nature.

[8]  Alexander Grunewald,et al.  Neural Correlates of Structure-from-Motion Perception in Macaque V1 and MT , 2002, The Journal of Neuroscience.

[9]  Tanya I. Baker,et al.  Cortical maps of separable tuning properties predict population responses to complex visual stimuli. , 2005, Journal of neurophysiology.

[10]  Eero P. Simoncelli,et al.  How MT cells analyze the motion of visual patterns , 2006, Nature Neuroscience.

[11]  S. Treue,et al.  The response of neurons in areas V1 and MT of the alert rhesus monkey to moving random dot patterns , 2005, Experimental Brain Research.

[12]  D. Bradley,et al.  Velocity computation in the primate visual system , 2008, Nature Reviews Neuroscience.

[13]  D. Ts'o,et al.  Functional organization of primate visual cortex revealed by high resolution optical imaging. , 1990, Science.

[14]  K R Gegenfurtner,et al.  Processing of color, form, and motion in macaque area V2 , 1996, Visual Neuroscience.

[15]  Nicholas J. Priebe,et al.  Tuning for Spatiotemporal Frequency and Speed in Directionally Selective Neurons of Macaque Striate Cortex , 2006, The Journal of Neuroscience.

[16]  Z. Kourtzi,et al.  Linking form and motion in the primate brain , 2008, Trends in Cognitive Sciences.

[17]  E. Callaway,et al.  Parallel processing strategies of the primate visual system , 2009, Nature Reviews Neuroscience.

[18]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[19]  Leonard E. White,et al.  Mapping multiple features in the population response of visual cortex , 2003, Nature.

[20]  L. Glass Moiré Effect from Random Dots , 1969, Nature.

[21]  Eero P. Simoncelli,et al.  Spatiotemporal Elements of Macaque V1 Receptive Fields , 2005, Neuron.

[22]  T D Albright,et al.  Form-cue invariant motion processing in primate visual cortex. , 1992, Science.

[23]  Jean Lorenceau,et al.  Form constraints in motion binding , 2001, Nature Neuroscience.

[24]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[25]  R. Born,et al.  Integrating motion and depth via parallel pathways , 2008, Nature Neuroscience.

[26]  David R. Badcock,et al.  Coherent global motion in the absence of coherent velocity signals , 2000, Current Biology.

[27]  D J Felleman,et al.  Segregation and convergence of functionally defined V2 thin stripe and interstripe compartment projections to area V4 of macaques. , 1999, Cerebral cortex.

[28]  DH Hubel,et al.  Psychophysical evidence for separate channels for the perception of form, color, movement, and depth , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  C. W. G Clifford,et al.  Fundamental mechanisms of visual motion detection: models, cells and functions , 2002, Progress in Neurobiology.

[30]  R. L. Valois,et al.  The orientation and direction selectivity of cells in macaque visual cortex , 1982, Vision Research.

[31]  Leo Maurice Hurvich,et al.  Color vision , 1981 .

[32]  R. Desimone,et al.  Visual properties of neurons in area V4 of the macaque: sensitivity to stimulus form. , 1987, Journal of neurophysiology.

[33]  D. G. Albrecht,et al.  Motion direction signals in the primary visual cortex of cat and monkey. , 2001, Visual neuroscience.

[34]  D. Hubel,et al.  Specificity of cortico-cortical connections in monkey visual system , 1983, Nature.

[35]  Carlos R. Ponce,et al.  Contributions of Indirect Pathways to Visual Response Properties in Macaque Middle Temporal Area MT , 2011, The Journal of Neuroscience.

[36]  D. Hubel,et al.  Segregation of form, color, movement, and depth: anatomy, physiology, and perception. , 1988, Science.

[37]  M. Silverman,et al.  Functional organization of the second cortical visual area in primates. , 1983, Science.

[38]  J. Movshon,et al.  Glass pattern responses in macaque V2 neurons. , 2007, Journal of vision.

[39]  S. Zeki,et al.  Segregation of pathways leading from area V2 to areas V4 and V5 of macaque monkey visual cortex , 1985, Nature.

[40]  D. Bradley,et al.  Structure and function of visual area MT. , 2005, Annual review of neuroscience.

[41]  Charles D. Gilbert,et al.  A hierarchy of the functional organization for color, form and disparity in primate visual area V2 , 2001, Vision Research.

[42]  Taihei Ninomiya,et al.  Differential architecture of multisynaptic geniculo-cortical pathways to V4 and MT. , 2011, Cerebral cortex.

[43]  A Grinvald,et al.  Optical imaging reveals the functional architecture of neurons processing shape and motion in owl monkey area MT , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[44]  D. Burr,et al.  Motion psychophysics: 1985–2010 , 2011, Vision Research.

[45]  Anthony J. Movshon,et al.  Visual Response Properties of Striate Cortical Neurons Projecting to Area MT in Macaque Monkeys , 1996, The Journal of Neuroscience.

[46]  Geraint Rees,et al.  Motion streaks in the brain: an fMRI study , 2010 .

[47]  J. Movshon,et al.  The analysis of visual motion: a comparison of neuronal and psychophysical performance , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[48]  Daniel Y. Ts’o,et al.  Whither the hypercolumn? , 2009, The Journal of physiology.

[49]  D. Burr,et al.  Seeing objects in motion , 1986, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[50]  J. Anthony Movshon,et al.  Dissociation of Neuronal and Psychophysical Responses to Local and Global Motion , 2011, Current Biology.

[51]  Nicole C. Rust,et al.  Do We Know What the Early Visual System Does? , 2005, The Journal of Neuroscience.

[52]  G. Sperling,et al.  Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception. , 1988, Journal of the Optical Society of America. A, Optics and image science.

[53]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[54]  E. Peterhans,et al.  Functional Organization of Area V2 in the Alert Macaque , 1993, The European journal of neuroscience.

[55]  John H. R. Maunsell,et al.  Mixed parvocellular and magnocellular geniculate signals in visual area V4 , 1992, Nature.

[56]  D. Mackay VISUAL NOISE AS A TOOL OF RESEARCH. , 1965, The Journal of general psychology.

[57]  W. Newsome,et al.  Motion selectivity in macaque visual cortex. I. Mechanisms of direction and speed selectivity in extrastriate area MT. , 1986, Journal of neurophysiology.

[58]  J. Mollon Color vision. , 1982, Annual review of psychology.

[59]  D. J. Felleman,et al.  A spatially organized representation of colour in macaque cortical area V2 , 2003, Nature.

[60]  David R. Badcock,et al.  Second-order orientation cues to the axis of motion , 2009, Vision Research.

[61]  Ricardo Gattass,et al.  Electrophysiological Imaging of Functional Architecture in the Cortical Middle Temporal Visual Area of Cebus apella Monkey , 2003, The Journal of Neuroscience.

[62]  Youping Xiao,et al.  Projections from primary visual cortex to cytochrome oxidase thin stripes and interstripes of macaque visual area 2. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[63]  T. Albright Direction and orientation selectivity of neurons in visual area MT of the macaque. , 1984, Journal of neurophysiology.

[64]  Frank Bremmer,et al.  Neural correlates of implied motion , 2003, Nature.

[65]  John Ross,et al.  Direct Evidence That “Speedlines” Influence Motion Mechanisms , 2002, The Journal of Neuroscience.

[66]  John H. R. Maunsell,et al.  How parallel are the primate visual pathways? , 1993, Annual review of neuroscience.

[67]  Peter König,et al.  Independent encoding of grating motion across stationary feature maps in primary visual cortex visualized with voltage-sensitive dye imaging , 2011, NeuroImage.

[68]  D. Fitzpatrick,et al.  A systematic map of direction preference in primary visual cortex , 1996, Nature.

[69]  D. Hubel,et al.  Regular patchy distribution of cytochrome oxidase staining in primary visual cortex of macaque monkey , 1981, Nature.

[70]  D. Ts'o,et al.  Visual topography in primate V2: multiple representation across functional stripes , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[71]  G. Blasdel,et al.  Differential imaging of ocular dominance and orientation selectivity in monkey striate cortex , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[72]  G. Blasdel,et al.  Voltage-sensitive dyes reveal a modular organization in monkey striate cortex , 1986, Nature.

[73]  D. V. Essen,et al.  Neural mechanisms of form and motion processing in the primate visual system , 1994, Neuron.

[74]  Hisashi Tanigawa,et al.  A Motion Direction Map in Macaque V2 , 2010, Neuron.

[75]  Ari Rosenberg,et al.  Models and measurements of functional maps in V1. , 2008, Journal of neurophysiology.

[76]  G. Orban,et al.  Velocity sensitivity and direction selectivity of neurons in areas V1 and V2 of the monkey: influence of eccentricity. , 1986, Journal of neurophysiology.

[77]  Jay Hegdé,et al.  Reappraising the Functional Implications of the Primate Visual Anatomical Hierarchy , 2007, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[78]  Wei Wang,et al.  Equivalent Representation of Real and Illusory Contours in Macaque V4 , 2012, The Journal of Neuroscience.

[79]  D Marr,et al.  Directional selectivity and its use in early visual processing , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[80]  A. Roe,et al.  Functional organization for color and orientation in macaque V4 , 2010, Nature Neuroscience.

[81]  D C Van Essen,et al.  Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. , 1983, Journal of neurophysiology.

[82]  H. Rodman,et al.  Coding of visual stimulus velocity in area MT of the macaque , 1987, Vision Research.

[83]  Lawrence C. Sincich,et al.  Independent Projection Streams from Macaque Striate Cortex to the Second Visual Area and Middle Temporal Area , 2003, The Journal of Neuroscience.

[84]  E. Adelson,et al.  Phenomenal coherence of moving visual patterns , 1982, Nature.

[85]  R. Wurtz,et al.  Vision during saccadic eye movements. I. Visual interactions in striate cortex. , 1980, Journal of neurophysiology.

[86]  D. Snodderly,et al.  Direction selectivity in V1 of alert monkeys: evidence for parallel pathways for motion processing , 2007, The Journal of physiology.

[87]  D. Hubel,et al.  Anatomy and physiology of a color system in the primate visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[88]  Xiangmin Xu,et al.  Optical imaging of visually evoked responses in prosimian primates reveals conserved features of the middle temporal visual area. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[89]  Xin Chen,et al.  Functional organization of temporal frequency selectivity in primate visual cortex. , 2008, Cerebral cortex.

[90]  Bevil R. Conway,et al.  Specialized Color Modules in Macaque Extrastriate Cortex , 2007, Neuron.

[91]  P Thompson,et al.  Motion psychophysics. , 1993, Reviews of oculomotor research.

[92]  R. Malach,et al.  Relationship between orientation domains, cytochrome oxidase stripes, and intrinsic horizontal connections in squirrel monkey area V2. , 1994, Cerebral cortex.

[93]  M. Carandini,et al.  Mapping of stimulus energy in primary visual cortex. , 2005, Journal of neurophysiology.

[94]  R. Desimone,et al.  Columnar organization of directionally selective cells in visual area MT of the macaque. , 1984, Journal of neurophysiology.

[95]  Wilson S. Geisler,et al.  Motion streaks provide a spatial code for motion direction , 1999, Nature.

[96]  E. DeYoe,et al.  Segregation of efferent connections and receptive field properties in visual area V2 of the macaque , 1985, Nature.

[97]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[98]  Ichiro Fujita,et al.  Organization of color-selective neurons in macaque visual area V4. , 2009, Journal of neurophysiology.

[99]  E. Callaway,et al.  Two Functional Channels from Primary Visual Cortex to Dorsal Visual Cortical Areas , 2001, Science.

[100]  J. B. Levitt,et al.  Receptive fields and functional architecture of macaque V2. , 1994, Journal of neurophysiology.

[101]  Youping Xiao,et al.  Organization of hue selectivity in macaque V2 thin stripes. , 2009, Journal of neurophysiology.

[102]  Ingo Schießl,et al.  Independent components of the haemodynamic response in intrinsic optical imaging , 2008, NeuroImage.

[103]  D Jancke,et al.  Orientation Formed by a Spot's Trajectory: A Two-Dimensional Population Approach in Primary Visual Cortex , 2000, The Journal of Neuroscience.

[104]  G. Ghose,et al.  Form processing modules in primate area V4. , 1997, Journal of neurophysiology.

[105]  Nicholas J. Priebe,et al.  The Neural Representation of Speed in Macaque Area MT/V5 , 2003, The Journal of Neuroscience.

[106]  Lawrence C. Sincich,et al.  V1 Interpatch Projections to V2 Thick Stripes and Pale Stripes , 2010, The Journal of Neuroscience.

[107]  Alexander Thiele,et al.  Speed skills: measuring the visual speed analyzing properties of primate MT neurons , 2001, Nature Neuroscience.

[108]  S. Zeki,et al.  The functional organization of area V2, I: Specialization across stripes and layers , 2002, Visual Neuroscience.

[109]  K. Nakayama,et al.  Psychophysical isolation of movement sensitivity by removal of familiar position cues , 1981, Vision Research.

[110]  Georgios A Keliris,et al.  Neurons in macaque area V4 acquire directional tuning after adaptation to motion stimuli , 2005, Nature Neuroscience.

[111]  R. Andersen,et al.  Neural Mechanisms of Visual Motion Perception in Primates , 1997, Neuron.

[112]  A. Grinvald,et al.  Functional Organization for Direction of Motion and Its Relationship to Orientation Maps in Cat Area 18 , 1996, The Journal of Neuroscience.

[113]  R. Tootell,et al.  Functional anatomy of the second visual area (V2) in the macaque , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[114]  Anna W. Roe,et al.  A Map for Horizontal Disparity in Monkey V2 , 2008, Neuron.

[115]  E. Peterhans,et al.  Anatomy and physiology of a neural mechanism defining depth order and contrast polarity at illusory contours , 2000, The European journal of neuroscience.

[116]  N. McLoughlin,et al.  Four Projection Streams from Primate V1 to the Cytochrome Oxidase Stripes of V2 , 2009, The Journal of Neuroscience.

[117]  G. Orban,et al.  Cue-invariant shape selectivity of macaque inferior temporal neurons. , 1993, Science.

[118]  D. Pollen,et al.  Spatial and temporal frequency selectivity of neurones in visual cortical areas V1 and V2 of the macaque monkey. , 1985, The Journal of physiology.

[119]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[120]  DH Hubel,et al.  Segregation of form, color, and stereopsis in primate area 18 , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[121]  Christopher C. Pack,et al.  Temporal dynamics of a neural solution to the aperture problem in visual area MT of macaque brain , 2001, Nature.

[122]  J. B. Levitt,et al.  Intrinsic cortical connections in macaque visual area V2: Evidence for interaction between different functional streams , 1994, The Journal of comparative neurology.

[123]  Lawrence C. Sincich,et al.  The circuitry of V1 and V2: integration of color, form, and motion. , 2005, Annual review of neuroscience.