Finite Speed of Propagation and Waiting Times for the Stochastic Porous Medium Equation: A Unifying Approach

In this paper, we develop an energy method to study finite speed of propagation and waiting time phenomena for the stochastic porous media equation with linear multiplicative noise in up to three spatial dimensions. Based on a novel iteration technique and on stochastic counterparts of weighted integral estimates used in the deterministic setting, we formulate a sufficient criterion on the growth of initial data which locally guarantees a waiting time phenomenon to occur almost surely. Up to a logarithmic factor, this criterion coincides with the optimal criterion known from the deterministic setting. Our technique can be modified to prove finite speed of propagation as well.

[1]  Benjamin Gess,et al.  Strong Solutions for Stochastic Partial Differential Equations of Gradient Type , 2011, 1104.4243.

[2]  Michael Röckner,et al.  Stochastic Porous Media Equations and Self-Organized Criticality , 2008, 0801.2478.

[3]  H. Helson Harmonic Analysis , 1983 .

[4]  Jesús Ildefonso Díaz Díaz,et al.  Energy Methods for Free Boundary Problems , 2002 .

[5]  L. Nirenberg,et al.  On elliptic partial differential equations , 1959 .

[6]  Lorenzo Giacomelli,et al.  A waiting time phenomenon for thin film equations , 2001 .

[7]  Louis Nirenberg,et al.  An extended interpolation inequality , 1966 .

[8]  J. U. Kim,et al.  On the stochastic porous medium equation , 2006 .

[9]  Xiongzhi Chen Brownian Motion and Stochastic Calculus , 2008 .

[10]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[11]  Lorenzo Giacomelli,et al.  Lower bounds on waiting times for degenerate parabolic equations and systems , 2006 .

[12]  T. Kurtz,et al.  Stochastic equations in infinite dimensions , 2006 .

[13]  Андрей Евгеньевич Шишков,et al.  Динамика носителей энергетических решений смешанных задач для квазилинейных параболических уравнений произвольного порядка@@@Dynamics of the supports of energy solutions of mixed problems for quasi-linear parabolic equations of arbitrary order , 1998 .

[14]  Jesús Ildefonso Díaz Díaz,et al.  Energy Methods for Free Boundary Problems: Applications to Nonlinear PDEs and Fluid Mechanics , 2001 .

[15]  J. Vázquez The Porous Medium Equation: Mathematical Theory , 2006 .

[16]  Vladimir I. Clue Harmonic analysis , 2004, 2004 IEEE Electro/Information Technology Conference.

[17]  M. Röckner,et al.  A Concise Course on Stochastic Partial Differential Equations , 2007 .

[18]  A. Shishkov,et al.  Dynamics of the supports of energy solutions of mixed problems for quasi-linear parabolic equations of arbitrary order , 1998 .

[19]  Benjamin Gess,et al.  Finite Speed of Propagation for Stochastic Porous Media Equations , 2012, SIAM J. Math. Anal..

[20]  Viorel Barbu,et al.  Localization of solutions to stochastic porous media equations: finite speed of propagation , 2012 .

[21]  Gonzalo Galiano,et al.  On a quasilinear degenerate system arising in semiconductor theory. Part II: Localization of vacuum solutions , 1999 .

[22]  Giuseppe Da Prato,et al.  Existence of strong solutions for stochastic porous media equation under general monotonicity conditions , 2007, math/0703421.

[23]  L. Evans Measure theory and fine properties of functions , 1992 .

[24]  Barry F. Knerr,et al.  The porous medium equation in one dimension , 1977 .

[25]  G. Stampacchia,et al.  Inverse Problem for a Curved Quantum Guide , 2012, Int. J. Math. Math. Sci..

[26]  J. Norris Appendix: probability and measure , 1997 .

[27]  Nicholas D. Alikakos,et al.  On the pointwise behavior of the solutions of the porous medium equation as t approaches zero or infinity , 1985 .

[28]  Giuseppe Da Prato,et al.  Existence and uniqueness of nonnegative solutions to the stochastic porous media equation , 2007 .

[29]  K. Kadlec,et al.  Stochastic Evolution Equations , 2013 .