Clarification of the Hashin‐Shtrikman bounds on the effective elastic moduli of polycrystals with hexagonal, trigonal, and tetragonal symmetries
暂无分享,去创建一个
[1] J. Watt,et al. The Elastic Properties of Composite Materials , 1976 .
[2] R. Meister,et al. Variational Method of Determining Effective Moduli of Polycrystals: (A) Hexagonal Symmetry, (B) Trigonal Symmetry , 1965 .
[3] S. Clark,et al. Handbook of physical constants , 1966 .
[4] G. Alers,et al. The elastic constants of zinc between 4.2° and 670°K , 1958 .
[5] R. Meister,et al. Variational Method of Determining Effective Moduli of Polycrystals with Tetragonal Symmetry , 1966 .
[6] J. Watt,et al. Hashin-Shtrikman bounds on the effective elastic moduli of polycrystals with orthorhombic symmetry , 1979 .
[7] S. Shtrikman,et al. A variational approach to the theory of the elastic behaviour of polycrystals , 1962 .
[8] M. Kumazawa. The elastic constant of polycrystalline rocks and nonelastic behavior inherent to them , 1969 .
[9] W. Voigt,et al. Lehrbuch der Kristallphysik , 1966 .
[10] R. Hill. The Elastic Behaviour of a Crystalline Aggregate , 1952 .
[11] S. Shtrikman,et al. On some variational principles in anisotropic and nonhomogeneous elasticity , 1962 .
[12] A. Reuss,et al. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .
[13] D. Chung. Elastic moduli of single crystal and polycrystalline MgO , 1963 .
[14] E. Kröner. Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls , 1958 .