Design of actively-cooled microvascular materials: a genetic algorithm inspired network optimization

The design of a microvascular flow network embedded in an actively-cooled polymeric material is presented. A multi-objective Genetic Algorithm (GA) combined with the finite element method is first used to determine the quasi-optimized network configurations and provide insight into the behavior of the actively-cooled material. The objective functions and constraints involve improving the flow efficiency and minimizing the void volume fraction of the material, while maintaining an allowable temperature in the system. A periodic configuration is adopted for the embedded network based on the results of this study. We then solve an optimization problem at a considerably lower computational cost to improve the optimized network configuration. To determine the final design, we implement the information obtained from the GA optimization to describe the geometry of the embedded network in a simple mathematical form and conduct a parameter study to evaluate its optimized shape.

[1]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[2]  Piyush R. Thakre,et al.  Three‐Dimensional Microvascular Fiber‐Reinforced Composites , 2011, Advanced materials.

[3]  Nancy R. Sottos,et al.  Self-Healing Materials with Interpenetrating Microvascular Networks N IC A T I , 2009 .

[4]  Anton Evgrafov,et al.  Simultaneous optimization of topology and geometry of flow networks , 2006 .

[5]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[6]  M. Patterson,et al.  Experimental and Numerical Study of a Stacked Microchannel Heat Sink for Liquid Cooling of Microelectronic Devices , 2007 .

[7]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[8]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[9]  Shiwei Zhou,et al.  Multiobjective topology optimization for finite periodic structures , 2010 .

[10]  Philippe H. Geubelle,et al.  Multi-physics design of microvascular materials for active cooling applications , 2011, J. Comput. Phys..

[11]  Yu. F. Maidanik,et al.  Miniature loop heat pipes for electronics cooling , 2003 .

[12]  J. Lewis,et al.  Self‐Healing Materials with Interpenetrating Microvascular Networks , 2009 .

[13]  O. Sigmund,et al.  Topology optimization of channel flow problems , 2005 .

[14]  Ole Sigmund,et al.  On the usefulness of non-gradient approaches in topology optimization , 2011 .

[15]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[16]  Nancy R. Sottos,et al.  Computational Modeling and Design of Actively-Cooled Microvascular Materials , 2012 .

[17]  Dong-Hoon Choi,et al.  OPTIMUM DESIGN OF PLATE HEAT EXCHANGER WITH STAGGERED PIN ARRAYS , 2004 .

[18]  David E. Goldberg,et al.  Design of microvascular flow networks using multi-objective genetic algorithms , 2008 .

[19]  Philippe H. Geubelle,et al.  An interface‐enriched generalized FEM for problems with discontinuous gradient fields , 2012 .

[20]  Nancy R. Sottos,et al.  Polymer Microvascular Network Composites , 2010 .

[21]  Jouni Lampinen,et al.  GDE3: the third evolution step of generalized differential evolution , 2005, 2005 IEEE Congress on Evolutionary Computation.

[22]  Joseph D. Bronzino,et al.  The Biomedical Engineering Handbook , 1995 .

[23]  Shiwei Zhou,et al.  Multiobjective topology optimization for finite periodic structures , 2010 .

[24]  David E. Goldberg,et al.  The Design of Innovation: Lessons from and for Competent Genetic Algorithms , 2002 .

[25]  S. Ranji Ranjithan,et al.  Optimal Design of Redundant Water Distribution Networks using a Cluster of Workstations , 2006 .

[26]  Anders Klarbring,et al.  Topology optimization of flow networks , 2003 .

[27]  S. Martel,et al.  PCB-Integrated Heat Exchanger for Cooling Electronics Using Microchannels Fabricated With the Direct-Write Method , 2008, IEEE Transactions on Components and Packaging Technologies.

[28]  Angus R. Simpson,et al.  Genetic algorithms compared to other techniques for pipe optimization , 1994 .

[29]  George I. N. Rozvany,et al.  A critical review of established methods of structural topology optimization , 2009 .

[30]  J. Lewis,et al.  Self-healing materials with microvascular networks. , 2007, Nature materials.

[31]  T. Devi Prasad,et al.  Multiobjective Genetic Algorithms for Design of Water Distribution Networks , 2004 .

[32]  C. Duarte,et al.  An interface-enriched generalized finite element method for problems with discontinuous gradient fields , 2010 .

[33]  E. Nobile,et al.  Geometric Parameterization and Multiobjective Shape Optimization of Convective Periodic Channels , 2006 .

[34]  Philippe H. Geubelle,et al.  A 3D interface-enriched generalized finite element method for weakly discontinuous problems with complex internal geometries , 2012 .

[35]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[36]  J. Whitelaw,et al.  Convective heat and mass transfer , 1966 .

[37]  Scott R. White,et al.  Characterization of Active Cooling and Flow Distribution in Microvascular Polymers , 2010 .

[38]  Adrian Bejan,et al.  Design with constructal theory , 2008 .

[39]  Adrian Be Jan Constructal-theory network of conducting paths for cooling a heat generating volume , 1997 .

[40]  M. Allen,et al.  Active cooling substrates for thermal management of microelectronics , 2005, IEEE Transactions on Components and Packaging Technologies.

[41]  D. Ouazar,et al.  Computational Hydraulics , 1983 .