Monte Carlo and quasi-Monte Carlo methods
暂无分享,去创建一个
[1] R. H. Fowler. The Mathematical Theory of Non-Uniform Gases , 1939, Nature.
[2] DAVID G. KENDALL,et al. Introduction to Mathematical Statistics , 1947, Nature.
[3] Feller William,et al. An Introduction To Probability Theory And Its Applications , 1950 .
[4] J. Halton. On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .
[5] C. Haselgrove,et al. A method for numerical integration , 1961 .
[6] L. Talbot,et al. PROCEEDINGS OF THE SECOND INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS , 1961 .
[7] J. Hammersley,et al. Monte Carlo Methods , 1965 .
[8] P. Prescott,et al. Monte Carlo Methods , 1964, Computational Statistical Physics.
[9] S. Zaremba. The Mathematical Basis of Monte Carlo and Quasi-Monte Carlo Methods , 1968 .
[10] Lauwerens Kuipers,et al. Uniform distribution of sequences , 1974 .
[11] I. Sobol. Uniformly distributed sequences with an additional uniform property , 1976 .
[12] Graeme A. Bird,et al. Monte Carlo Simulation of Gas Flows , 1978 .
[13] G. Lepage. A new algorithm for adaptive multidimensional integration , 1978 .
[14] D. Pullin,et al. Generation of normal variates with given sample mean and variance , 1979 .
[15] H. Keng,et al. Applications of number theory to numerical analysis , 1981 .
[16] H. Faure. Discrépance de suites associées à un système de numération (en dimension s) , 1982 .
[17] E. Montroll,et al. Nonequilibrium phenomena I - The Boltzmann equation , 1983 .
[18] R. Caflisch. Fluid dynamics and the Boltzmann equation , 1984 .
[19] Edward W. Larsen,et al. Diffusion-synthetic acceleration methods for discrete-ordinates problems , 1984 .
[20] Katsuhisa Koura,et al. Null‐collision technique in the direct‐simulation Monte Carlo method , 1986 .
[21] K. Nanbu. Theoretical basis of the direct simulation Monte Carlo method , 1986 .
[22] David B. Goldstein,et al. Investigations of the motion of discrete-velocity gases , 1988 .
[23] C. Cercignani. The Boltzmann equation and its applications , 1988 .
[24] Raffaele Esposito,et al. Incompressible Navier-Stokes and Euler Limits of the Boltzmann Equation , 1989 .
[25] E. Larsen,et al. Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes II , 1989 .
[26] E. Phillip Muntz,et al. Rarefied gas dynamics : theoretical and computational techniques , 1989 .
[27] F. A. Seiler,et al. Numerical Recipes in C: The Art of Scientific Computing , 1989 .
[28] E. P. Muntz,et al. Investigations of the Motion of Discrete-Velocity Gases , 1989 .
[29] Helmut Neunzert,et al. Application of well-distributed sequences to the numerical simulation of the Boltzmann equation , 1990 .
[30] H. Wozniakowski. Average case complexity of multivariate integration , 1991 .
[31] F. Golse,et al. Fluid dynamic limits of kinetic equations. I. Formal derivations , 1991 .
[32] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[33] William H. Press,et al. Portable Random Number Generators , 1992 .
[34] Edward W. Larsen,et al. The asymptotic diffusion limit of a linear discontinuous discretization of a two-dimensional linear transport equation , 1992 .
[35] William H. Press,et al. The Art of Scientific Computing Second Edition , 1998 .
[36] W. Wagner. A convergence proof for Bird's direct simulation Monte Carlo method for the Boltzmann equation , 1992 .
[37] C. D. Levermore,et al. Fully-discrete numerical transfer in diffusive regimes , 1993 .
[38] François Golse,et al. Fluid dynamic limits of kinetic equations II convergence proofs for the boltzmann equation , 1993 .
[39] Russel E. Caflisch,et al. A quasi-Monte Carlo approach to particle simulation of the heat equation , 1993 .
[40] Harald Niederreiter,et al. Programs to generate Niederreiter's low-discrepancy sequences , 1994, TOMS.
[41] Russel E. Caflisch,et al. Quasi-Random Sequences and Their Discrepancies , 1994, SIAM J. Sci. Comput..
[42] Jerome Spanier,et al. Quasi-Random Methods for Estimating Integrals Using Relatively Small Samples , 1994, SIAM Rev..
[43] H. Niederreiter,et al. A construction of low-discrepancy sequences using global function fields , 1995 .
[44] A. Owen. Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences , 1995 .
[45] H. Niederreiter,et al. Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing , 1995 .
[46] R. Caflisch,et al. Quasi-Monte Carlo integration , 1995 .
[47] Fred J. Hickernell,et al. The mean square discrepancy of randomized nets , 1996, TOMC.
[48] R. Caflisch,et al. Smoothness and dimension reduction in Quasi-Monte Carlo methods , 1996 .
[49] A. Owen. Scrambled net variance for integrals of smooth functions , 1997 .
[50] A. Owen,et al. Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 1997 .
[51] G. Toscani,et al. Relaxation Schemes for Nonlinear Kinetic Equations , 1997 .
[52] Giovanni Russo,et al. Uniformly Accurate Schemes for Hyperbolic Systems with Relaxation , 1997 .
[53] A. Owen. Monte Carlo Variance of Scrambled Net Quadrature , 1997 .
[54] Fred J. Hickernell,et al. A generalized discrepancy and quadrature error bound , 1998, Math. Comput..
[55] Peter Zinterhof,et al. Monte Carlo and Quasi-Monte Carlo Methods 1996 , 1998 .
[56] P. Glasserman,et al. A Comparison of Some Monte Carlo and Quasi Monte Carlo Techniques for Option Pricing , 1998 .