Monte Carlo and quasi-Monte Carlo methods

Monte Carlo is one of the most versatile and widely used numerical methods. Its convergence rate, O(N−1/2), is independent of dimension, which shows Monte Carlo to be very robust but also slow. This article presents an introduction to Monte Carlo methods for integration problems, including convergence theory, sampling methods and variance reduction techniques. Accelerated convergence for Monte Carlo quadrature is attained using quasi-random (also called low-discrepancy) sequences, which are a deterministic alternative to random or pseudo-random sequences. The points in a quasi-random sequence are correlated to provide greater uniformity. The resulting quadrature method, called quasi-Monte Carlo, has a convergence rate of approximately O((logN)kN−1). For quasi-Monte Carlo, both theoretical error estimates and practical limitations are presented. Although the emphasis in this article is on integration, Monte Carlo simulation of rarefied gas dynamics is also discussed. In the limit of small mean free path (that is, the fluid dynamic limit), Monte Carlo loses its effectiveness because the collisional distance is much less than the fluid dynamic length scale. Computational examples are presented throughout the text to illustrate the theory. A number of open problems are described.

[1]  R. H. Fowler The Mathematical Theory of Non-Uniform Gases , 1939, Nature.

[2]  DAVID G. KENDALL,et al.  Introduction to Mathematical Statistics , 1947, Nature.

[3]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[4]  J. Halton On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .

[5]  C. Haselgrove,et al.  A method for numerical integration , 1961 .

[6]  L. Talbot,et al.  PROCEEDINGS OF THE SECOND INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS , 1961 .

[7]  J. Hammersley,et al.  Monte Carlo Methods , 1965 .

[8]  P. Prescott,et al.  Monte Carlo Methods , 1964, Computational Statistical Physics.

[9]  S. Zaremba The Mathematical Basis of Monte Carlo and Quasi-Monte Carlo Methods , 1968 .

[10]  Lauwerens Kuipers,et al.  Uniform distribution of sequences , 1974 .

[11]  I. Sobol Uniformly distributed sequences with an additional uniform property , 1976 .

[12]  Graeme A. Bird,et al.  Monte Carlo Simulation of Gas Flows , 1978 .

[13]  G. Lepage A new algorithm for adaptive multidimensional integration , 1978 .

[14]  D. Pullin,et al.  Generation of normal variates with given sample mean and variance , 1979 .

[15]  H. Keng,et al.  Applications of number theory to numerical analysis , 1981 .

[16]  H. Faure Discrépance de suites associées à un système de numération (en dimension s) , 1982 .

[17]  E. Montroll,et al.  Nonequilibrium phenomena I - The Boltzmann equation , 1983 .

[18]  R. Caflisch Fluid dynamics and the Boltzmann equation , 1984 .

[19]  Edward W. Larsen,et al.  Diffusion-synthetic acceleration methods for discrete-ordinates problems , 1984 .

[20]  Katsuhisa Koura,et al.  Null‐collision technique in the direct‐simulation Monte Carlo method , 1986 .

[21]  K. Nanbu Theoretical basis of the direct simulation Monte Carlo method , 1986 .

[22]  David B. Goldstein,et al.  Investigations of the motion of discrete-velocity gases , 1988 .

[23]  C. Cercignani The Boltzmann equation and its applications , 1988 .

[24]  Raffaele Esposito,et al.  Incompressible Navier-Stokes and Euler Limits of the Boltzmann Equation , 1989 .

[25]  E. Larsen,et al.  Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes II , 1989 .

[26]  E. Phillip Muntz,et al.  Rarefied gas dynamics : theoretical and computational techniques , 1989 .

[27]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[28]  E. P. Muntz,et al.  Investigations of the Motion of Discrete-Velocity Gases , 1989 .

[29]  Helmut Neunzert,et al.  Application of well-distributed sequences to the numerical simulation of the Boltzmann equation , 1990 .

[30]  H. Wozniakowski Average case complexity of multivariate integration , 1991 .

[31]  F. Golse,et al.  Fluid dynamic limits of kinetic equations. I. Formal derivations , 1991 .

[32]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[33]  William H. Press,et al.  Portable Random Number Generators , 1992 .

[34]  Edward W. Larsen,et al.  The asymptotic diffusion limit of a linear discontinuous discretization of a two-dimensional linear transport equation , 1992 .

[35]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[36]  W. Wagner A convergence proof for Bird's direct simulation Monte Carlo method for the Boltzmann equation , 1992 .

[37]  C. D. Levermore,et al.  Fully-discrete numerical transfer in diffusive regimes , 1993 .

[38]  François Golse,et al.  Fluid dynamic limits of kinetic equations II convergence proofs for the boltzmann equation , 1993 .

[39]  Russel E. Caflisch,et al.  A quasi-Monte Carlo approach to particle simulation of the heat equation , 1993 .

[40]  Harald Niederreiter,et al.  Programs to generate Niederreiter's low-discrepancy sequences , 1994, TOMS.

[41]  Russel E. Caflisch,et al.  Quasi-Random Sequences and Their Discrepancies , 1994, SIAM J. Sci. Comput..

[42]  Jerome Spanier,et al.  Quasi-Random Methods for Estimating Integrals Using Relatively Small Samples , 1994, SIAM Rev..

[43]  H. Niederreiter,et al.  A construction of low-discrepancy sequences using global function fields , 1995 .

[44]  A. Owen Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences , 1995 .

[45]  H. Niederreiter,et al.  Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing , 1995 .

[46]  R. Caflisch,et al.  Quasi-Monte Carlo integration , 1995 .

[47]  Fred J. Hickernell,et al.  The mean square discrepancy of randomized nets , 1996, TOMC.

[48]  R. Caflisch,et al.  Smoothness and dimension reduction in Quasi-Monte Carlo methods , 1996 .

[49]  A. Owen Scrambled net variance for integrals of smooth functions , 1997 .

[50]  A. Owen,et al.  Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 1997 .

[51]  G. Toscani,et al.  Relaxation Schemes for Nonlinear Kinetic Equations , 1997 .

[52]  Giovanni Russo,et al.  Uniformly Accurate Schemes for Hyperbolic Systems with Relaxation , 1997 .

[53]  A. Owen Monte Carlo Variance of Scrambled Net Quadrature , 1997 .

[54]  Fred J. Hickernell,et al.  A generalized discrepancy and quadrature error bound , 1998, Math. Comput..

[55]  Peter Zinterhof,et al.  Monte Carlo and Quasi-Monte Carlo Methods 1996 , 1998 .

[56]  P. Glasserman,et al.  A Comparison of Some Monte Carlo and Quasi Monte Carlo Techniques for Option Pricing , 1998 .