Superior activity of MnOx-CeO2/TiO2 catalyst for catalytic oxidation of elemental mercury at low flue gas temperatures

[1]  Chang-Yu Wu,et al.  CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas. , 2011, Environmental science & technology.

[2]  Hai-Long Li,et al.  Oxidation and capture of elemental mercury over SiO2–TiO2–V2O5 catalysts in simulated low-rank coal combustion flue gas , 2011 .

[3]  Y. Duan,et al.  Effect of Manganese Ions on the Structure of Ca(OH)2 and Mercury Adsorption Performance of Mnx+/Ca(OH)2 Composites , 2011 .

[4]  Maofa Ge,et al.  Enhanced activity of tungsten modified CeO2/TiO2 for selective catalytic reduction of NOx with ammonia , 2010 .

[5]  Hong-Jip Kim,et al.  High deNOx performance of Mn/TiO2 catalyst by NH3 , 2010 .

[6]  Y. Seo,et al.  Effect of selective catalytic reactor on oxidation and enhanced removal of mercury in coal-fired power plants , 2010 .

[7]  Yue Liu,et al.  Low-temperature selective catalytic reduction of NO with NH(3) over Mn-Ce oxides supported on TiO2 and Al2O3: a comparative study. , 2010, Chemosphere.

[8]  Jiming Hao,et al.  Mercury emission and speciation of coal-fired power plants in China , 2009 .

[9]  Maofa Ge,et al.  Promotional Effect of Ce-doped V2O5-WO3/TiO2 with Low Vanadium Loadings for Selective Catalytic Reduction of NOx by NH3 , 2009 .

[10]  J. Milford,et al.  After the clean air mercury rule: prospects for reducing mercury emissions from coal-fired power plants. , 2009, Environmental science & technology.

[11]  J. Jia,et al.  Adsorption and Catalytic Oxidation of Gaseous Elemental Mercury in Flue Gas over MnOx/Alumina , 2009 .

[12]  Yue Liu,et al.  Effect of ceria doping on SO2 resistance of Mn/TiO2 for selective catalytic reduction of NO with NH3 at low temperature , 2009 .

[13]  Jinsong Zhou,et al.  Mercury Oxidation over a Vanadia-based Selective Catalytic Reduction Catalyst , 2009 .

[14]  Toshiyuki Naito,et al.  Mercury Oxidation over the V2O5(WO3)/TiO2 Commercial SCR Catalyst , 2008 .

[15]  S. Ito,et al.  Mercury oxidation by hydrochloric acid over a VOx/TiO2 catalyst , 2008 .

[16]  Yue Liu,et al.  Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low-temperature , 2008 .

[17]  K. Powers,et al.  Development of silica/vanadia/titania catalysts for removal of elemental mercury from coal-combustion flue gas. , 2008, Environmental science & technology.

[18]  P. Smirniotis,et al.  Manganese Oxide/Titania Materials for Removal of NOx and Elemental Mercury from Flue Gas , 2008 .

[19]  Hong He,et al.  Selective catalytic reduction of NO by NH3 over a Ce/TiO2 catalyst , 2008 .

[20]  T. Lee,et al.  Heterogeneous Mercury Reaction on a Selective Catalytic Reduction (SCR) Catalyst , 2008 .

[21]  P. Boolchand,et al.  Surface characterization studies of TiO2 supported manganese oxide catalysts for low temperature SCR of NO with NH3 , 2007 .

[22]  Ji Man Kim,et al.  Manganese oxide catalysts for NOx reduction with NH3 at low temperatures , 2007 .

[23]  Yue Liu,et al.  Experimental study on a low-temperature SCR catalyst based on MnO(x)/TiO(2) prepared by sol-gel method. , 2007, Journal of hazardous materials.

[24]  W. Pan,et al.  Transformation of mercury speciation through the SCR system in power plants. , 2007, Journal of environmental sciences.

[25]  Wan-peng Zhu,et al.  The surface properties and the activities in catalytic wet air oxidation over CeO2–TiO2 catalysts , 2006 .

[26]  A. Presto,et al.  Survey of catalysts for oxidation of mercury in flue gas. , 2006, Environmental science & technology.

[27]  C. Senior Oxidation of Mercury across Selective Catalytic Reduction Catalysts in Coal–Fired Power Plants , 2006, Journal of the Air & Waste Management Association.

[28]  S. Niksa,et al.  A Predictive Mechanism for Mercury Oxidation on Selective Catalytic Reduction Catalysts under Coal-Derived Flue Gas , 2005, Journal of the Air & Waste Management Association.

[29]  H. Stenger,et al.  Understanding mercury conversion in selective catalytic reduction (SCR) catalysts , 2005 .

[30]  Steven A. Benson,et al.  SCR catalyst performance in flue gases derived from subbituminous and lignite coals , 2005 .

[31]  Y. Zhuang,et al.  Development of a mercury transformation model in coal combustion flue gas. , 2004, Environmental science & technology.

[32]  R. T. Yang,et al.  Characterization and FTIR Studies of MnOx−CeO2 Catalyst for Low-Temperature Selective Catalytic Reduction of NO with NH3 , 2004 .

[33]  R. T. Yang,et al.  MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures , 2004 .

[34]  C. Zygarlicke,et al.  Effects of NO, ?-FeO, ?-FeO, and HCl on mercury transformations in a 7-kW coal combustion system , 2004 .

[35]  Constance Senior,et al.  OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS , 2004 .

[36]  P. Smirniotis,et al.  TiO2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3. I. Evaluation and characterization of first row transition metals , 2004 .

[37]  Steven A. Benson,et al.  Status review of mercury control options for coal-fired power plants , 2003 .

[38]  R. T. Yang,et al.  Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx–CeO2 catalyst , 2003 .

[39]  Ataullah Khan,et al.  Structural Characterization of CeO2−TiO2 and V2O5/CeO2−TiO2 Catalysts by Raman and XPS Techniques , 2003 .

[40]  P. Reyes,et al.  Catalytic and photocatalytic ozonation of phenol on MnO2 supported catalysts , 2002 .

[41]  P. Smirniotis,et al.  Low-Temperature Selective Catalytic Reduction (SCR) of NO with NH3 by Using Mn, Cr, and Cu Oxides Supported on Hombikat TiO2. , 2001, Angewandte Chemie.

[42]  A. Sarofim,et al.  Emissions of mercury, trace elements, and fine particles from stationary combustion sources , 2000 .

[43]  E. Granite,et al.  Novel Sorbents For Mercury Removal From Flue Gas , 2000 .

[44]  S. Overbury,et al.  Electron spectroscopy of single crystal and polycrystalline cerium oxide surfaces , 1998 .

[45]  Lixiong Li,et al.  Supercritical Water Oxidation of NH3 over a MnO2/CeO2 Catalyst , 1998 .

[46]  Christopher J. Zygarlicke,et al.  Mercury Speciation in Coal Combustion and Gasification Flue Gases , 1996 .

[47]  J. Jia,et al.  Catalytic oxidation of elemental mercury over the modified catalyst Mn/alpha-Al2O3 at lower temperatures. , 2010, Environmental science & technology.

[48]  Jiang Wu,et al.  Study of Mercury Oxidation by a Selective Catalytic Reduction Catalyst in a Pilot-Scale Slipstream Reactor at a Utility Boiler Burning Bituminous Coal† , 2007 .

[49]  T. Feeley,et al.  Evaluation of the Effect of SCR NOx Control Technology on Mercury Speciation , 2003 .

[50]  Jiqing Lu,et al.  Structure and Redox Properties of CexTi1-xO2 Solid Solution , 2001 .