SMS-EDA-MEC: Extending Copula-based EDAs to multi-objective optimization

It can be argued that in order to produce a sub-stantial improvement in multi-objective estimation of distribution algorithms it is necessary to focus on a particular group of issues, in particular, on the weaknesses derived from multi-objective fitness assignment and selection methods, the incorrect treatment of relevant but isolated (precursor) individuals; the loss of population diversity, and the use of `general purpose' modeling algorithms without taking note of the particular requirements of the task. In this work we introduce the S-Metric Selection Estimation of Distribution Algorithm based on Multivariate Extension of Copulas (SMS-EDA-MEC). SMS-EDA-MEC was devised with the intention of dealing with those issues in mind. It builds the population model relying on the comprehensive Clayton's copula and incorporates methods for automatic population restarting and for priming precursor individuals. The experimental studies presented show that SMS-EDA-MEC yields better results than current and `traditional' approaches.

[1]  Witold Kosiński,et al.  Advances in Evolutionary Algorithms , 2008 .

[2]  Marta Soto,et al.  copulaedas: An R Package for Estimation of Distribution Algorithms Based on Copulas , 2012, ArXiv.

[3]  D. Fogel Evolutionary algorithms in theory and practice , 1997, Complex..

[4]  D. Clayton A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence , 1978 .

[5]  Chang Wook Ahn,et al.  Advances in Evolutionary Algorithms: Theory, Design and Practice , 2006, Studies in Computational Intelligence.

[6]  Jose Miguel Puerta,et al.  Avoiding premature convergence in estimation of distribution algorithms , 2009, 2009 IEEE Congress on Evolutionary Computation.

[7]  Johannes Bader,et al.  Hypervolume-based search for multiobjective optimization: Theory and methods , 2010 .

[8]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[9]  R. Nelsen An Introduction to Copulas , 1998 .

[10]  Dirk Thierens,et al.  The Naive MIDEA: A Baseline Multi-objective EA , 2005, EMO.

[11]  Kalyanmoy Deb,et al.  An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints , 2014, IEEE Transactions on Evolutionary Computation.

[12]  Lingxi Peng,et al.  Pareto-based multi-objective estimation of distribution algorithm with Gaussian copulas and application in RFID network planning , 2012, 2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI).

[13]  Heike Trautmann,et al.  A Taxonomy of Online Stopping Criteria for Multi-Objective Evolutionary Algorithms , 2011, EMO.

[14]  Carlos M. Fonseca,et al.  A Box Decomposition Algorithm to Compute the Hypervolume Indicator , 2015, Comput. Oper. Res..

[15]  Lingxi Peng,et al.  Estimation of Distribution Algorithm with Multivariate T-Copulas for Multi-Objective Optimization , 2013 .

[16]  W. Kruskal,et al.  Use of Ranks in One-Criterion Variance Analysis , 1952 .

[17]  Peter A. N. Bosman,et al.  The anticipated mean shift and cluster registration in mixture-based EDAs for multi-objective optimization , 2010, GECCO '10.

[18]  Foudil Cherif,et al.  A Posteriori Pareto Front Diversification Using a Copula-Based Estimation of Distribution Algorithm , 2015 .

[19]  Jesús García,et al.  MONEDA: scalable multi-objective optimization with a neural network-based estimation of distribution algorithm , 2016, Journal of Global Optimization.

[20]  E. Luciano,et al.  Copula methods in finance , 2004 .

[21]  Stefan Roth,et al.  Covariance Matrix Adaptation for Multi-objective Optimization , 2007, Evolutionary Computation.

[22]  Olivier Roustant,et al.  On the estimation of Pareto fronts from the point of view of copula theory , 2015, Inf. Sci..

[23]  A. Frigessi,et al.  Pair-copula constructions of multiple dependence , 2009 .

[24]  Kalyanmoy Deb,et al.  Multiobjective optimization , 1997 .

[25]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[26]  Lingxi Peng,et al.  Multiobjective Estimation of Distribution Algorithms Using Multivariate Archimedean Copulas and Average Ranking , 2014 .

[27]  David E. Goldberg,et al.  Multiobjective Estimation of Distribution Algorithms , 2006, Scalable Optimization via Probabilistic Modeling.

[28]  Marley M. B. R. Vellasco,et al.  Nonconvex Functions Optimization Using an Estimation of Distribution Algorithm Based on a Multivariate Extension of the Clayton Copula , 2014, IDEAL.

[29]  Nicola Beume,et al.  SMS-EMOA: Multiobjective selection based on dominated hypervolume , 2007, Eur. J. Oper. Res..

[30]  Marco Laumanns,et al.  Scalable multi-objective optimization test problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[31]  R. Lyndon While,et al.  A review of multiobjective test problems and a scalable test problem toolkit , 2006, IEEE Transactions on Evolutionary Computation.

[32]  E. Luciano,et al.  Copula Methods in Finance: Cherubini/Copula , 2004 .

[33]  Marley M. B. R. Vellasco,et al.  Estimation of Distribution Algorithm Based on a Multivariate Extension of the Archimedean Copula , 2013, 2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence.

[34]  Martin E. Dyer,et al.  A Random Polynomial Time Algorithm for Approximating the Volume of Convex Bodies , 1989, STOC.