SMS-EDA-MEC: Extending Copula-based EDAs to multi-objective optimization
暂无分享,去创建一个
Marley M. B. R. Vellasco | Nayat Sánchez Pi | Luis Martí | Harold D. de Mello | Luis Martí | M. Vellasco | H. D. D. Mello
[1] Witold Kosiński,et al. Advances in Evolutionary Algorithms , 2008 .
[2] Marta Soto,et al. copulaedas: An R Package for Estimation of Distribution Algorithms Based on Copulas , 2012, ArXiv.
[3] D. Fogel. Evolutionary algorithms in theory and practice , 1997, Complex..
[4] D. Clayton. A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence , 1978 .
[5] Chang Wook Ahn,et al. Advances in Evolutionary Algorithms: Theory, Design and Practice , 2006, Studies in Computational Intelligence.
[6] Jose Miguel Puerta,et al. Avoiding premature convergence in estimation of distribution algorithms , 2009, 2009 IEEE Congress on Evolutionary Computation.
[7] Johannes Bader,et al. Hypervolume-based search for multiobjective optimization: Theory and methods , 2010 .
[8] M. Sklar. Fonctions de repartition a n dimensions et leurs marges , 1959 .
[9] R. Nelsen. An Introduction to Copulas , 1998 .
[10] Dirk Thierens,et al. The Naive MIDEA: A Baseline Multi-objective EA , 2005, EMO.
[11] Kalyanmoy Deb,et al. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints , 2014, IEEE Transactions on Evolutionary Computation.
[12] Lingxi Peng,et al. Pareto-based multi-objective estimation of distribution algorithm with Gaussian copulas and application in RFID network planning , 2012, 2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI).
[13] Heike Trautmann,et al. A Taxonomy of Online Stopping Criteria for Multi-Objective Evolutionary Algorithms , 2011, EMO.
[14] Carlos M. Fonseca,et al. A Box Decomposition Algorithm to Compute the Hypervolume Indicator , 2015, Comput. Oper. Res..
[15] Lingxi Peng,et al. Estimation of Distribution Algorithm with Multivariate T-Copulas for Multi-Objective Optimization , 2013 .
[16] W. Kruskal,et al. Use of Ranks in One-Criterion Variance Analysis , 1952 .
[17] Peter A. N. Bosman,et al. The anticipated mean shift and cluster registration in mixture-based EDAs for multi-objective optimization , 2010, GECCO '10.
[18] Foudil Cherif,et al. A Posteriori Pareto Front Diversification Using a Copula-Based Estimation of Distribution Algorithm , 2015 .
[19] Jesús García,et al. MONEDA: scalable multi-objective optimization with a neural network-based estimation of distribution algorithm , 2016, Journal of Global Optimization.
[20] E. Luciano,et al. Copula methods in finance , 2004 .
[21] Stefan Roth,et al. Covariance Matrix Adaptation for Multi-objective Optimization , 2007, Evolutionary Computation.
[22] Olivier Roustant,et al. On the estimation of Pareto fronts from the point of view of copula theory , 2015, Inf. Sci..
[23] A. Frigessi,et al. Pair-copula constructions of multiple dependence , 2009 .
[24] Kalyanmoy Deb,et al. Multiobjective optimization , 1997 .
[25] Gary B. Lamont,et al. Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.
[26] Lingxi Peng,et al. Multiobjective Estimation of Distribution Algorithms Using Multivariate Archimedean Copulas and Average Ranking , 2014 .
[27] David E. Goldberg,et al. Multiobjective Estimation of Distribution Algorithms , 2006, Scalable Optimization via Probabilistic Modeling.
[28] Marley M. B. R. Vellasco,et al. Nonconvex Functions Optimization Using an Estimation of Distribution Algorithm Based on a Multivariate Extension of the Clayton Copula , 2014, IDEAL.
[29] Nicola Beume,et al. SMS-EMOA: Multiobjective selection based on dominated hypervolume , 2007, Eur. J. Oper. Res..
[30] Marco Laumanns,et al. Scalable multi-objective optimization test problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).
[31] R. Lyndon While,et al. A review of multiobjective test problems and a scalable test problem toolkit , 2006, IEEE Transactions on Evolutionary Computation.
[32] E. Luciano,et al. Copula Methods in Finance: Cherubini/Copula , 2004 .
[33] Marley M. B. R. Vellasco,et al. Estimation of Distribution Algorithm Based on a Multivariate Extension of the Archimedean Copula , 2013, 2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence.
[34] Martin E. Dyer,et al. A Random Polynomial Time Algorithm for Approximating the Volume of Convex Bodies , 1989, STOC.