Evolution of cathode-interlayer interfaces and its effect on long-term degradation

[1]  K. Yamaji,et al.  Oxygen surface exchange properties and surface segregation behavior of nanostructured La0.6Sr0.4Co0.2Fe0.8O3-δ thin film cathodes. , 2019, Physical chemistry chemical physics : PCCP.

[2]  K. Yamaji,et al.  Multilayered LSC and GDC: An approach for designing cathode materials with superior oxygen exchange properties for solid oxide fuel cells , 2018, Nano Energy.

[3]  A. Tarancón,et al.  Enhanced Performance of Gadolinia-Doped Ceria Diffusion Barrier Layers Fabricated by Pulsed Laser Deposition for Large-Area Solid Oxide Fuel Cells , 2018 .

[4]  E. Ivers-Tiffée,et al.  Correlative tomography at the cathode/electrolyte interfaces of solid oxide fuel cells , 2017 .

[5]  N. Shikazono,et al.  Recent Achievements of NEDO Durability Project with an Emphasis on Correlation Between Cathode Overpotential and Ohmic Loss , 2017 .

[6]  K. Yamaji,et al.  Elucidating the origin of oxide ion blocking effects at GDC/SrZr(Y)O3/YSZ interfaces , 2017 .

[7]  T. Ishihara,et al.  Surface chemistry of La0.6Sr0.4CoO3−δ thin films and its impact on the oxygen surface exchange resistance , 2015 .

[8]  Yan Chen,et al.  Segregated Chemistry and Structure on (001) and (100) Surfaces of (La1–xSrx)2CoO4 Override the Crystal Anisotropy in Oxygen Exchange Kinetics , 2015 .

[9]  K. Yamaji,et al.  Evidence for enhanced oxygen surface exchange reaction in nanostructured Gd2O3-doped CeO2 films , 2015, Nanotechnology.

[10]  Mina Nishi,et al.  Effect of polarization on Sr and Zr diffusion behavior in LSCF/GDC/YSZ system , 2014 .

[11]  Mina Nishi,et al.  Sr and Zr diffusion in LSCF/10GDC/8YSZ triplets for solid oxide fuel cells (SOFCs) , 2014 .

[12]  Ellen Ivers-Tiffée,et al.  Nanoscaled La0.6Sr0.4CoO3−δ as intermediate temperature solid oxide fuel cell cathode: Microstructure and electrochemical performance , 2011 .

[13]  K. Yamaji,et al.  Interfacial stability and cation diffusion across the LSCF/GDC interface , 2011 .

[14]  Juergen Fleig,et al.  Relationship between Cation Segregation and the Electrochemical Oxygen Reduction Kinetics of La0.6Sr0.4CoO3−δ Thin Film Electrodes , 2011 .

[15]  R. Knibbe,et al.  Cathode-Electrolyte Interfaces with CGO Barrier Layers in SOFC , 2010 .

[16]  Juergen Fleig,et al.  Optimized La0.6Sr0.4CoO3–δ Thin‐Film Electrodes with Extremely Fast Oxygen‐Reduction Kinetics , 2009 .

[17]  Boris Iwanschitz,et al.  Fundamental mechanisms limiting solid oxide fuel cell durability , 2008 .

[18]  E. Ivers-Tiffée,et al.  Nanoscaled ( La0.5Sr0.5 ) CoO3 − δ Thin Film Cathodes for SOFC Application at 500 ° C < T < 700 ° C , 2008 .

[19]  Harumi Yokokawa,et al.  Thermodynamic and kinetic considerations on degradations in solid oxide fuel cell cathodes , 2008 .

[20]  Harumi Yokokawa,et al.  Enhancement of oxygen exchange at the hetero interface of (La,Sr)CoO3/(La,Sr)2CoO4 in composite ceramics , 2008 .

[21]  Jürgen Fleig,et al.  Impedance spectroscopic study on well-defined (La,Sr)(Co,Fe)O3-δ model electrodes , 2006 .

[22]  K. Kawamura,et al.  Determination of Oxygen Vacancy Concentration in a Thin Film of La0.6Sr0.4CoO3 − δ by an Electrochemical Method , 2002 .

[23]  N. Sakai,et al.  Oxygen isotope exchange with a dense La0.6Sr0.4CoO3−δ electrode on a Ce0.9Ca0.1O1.9 electrolyte , 1999 .

[24]  K. Kishio,et al.  Diffusion of oxide ion vacancies in perovskite-type oxides , 1988 .

[25]  E. Ivers-Tiffée,et al.  Nature and Functionality of La0.58Sr0.4Co0.2Fe0.8O3-δ / Gd0.2Ce0.8O2-δ / Y0.16Zr0.84O2-δ Interfaces in SOFCs , 2018 .

[26]  K. Yamaji,et al.  Effect of Cathodic Polarization on the La0.6Sr0.4Co0.2Fe0.8O3-δ-Cathode/Gd-Doped Ceria-Interlayer/YSZ Electrolyte Interfaces of Solid Oxide Fuel Cells , 2017 .

[27]  K. Yamaji,et al.  Imaging of Oxide Ionic Diffusion at Cathode/Interlayer/Electrolyte Interfaces in Solid Oxide Fuel Cells: Effects of Long-Term Operation , 2012 .

[28]  Y. Haven,et al.  Correlation factors for diffusion in solids , 1956 .