Fine spectral estimates with applications to the optimally fast solution of large FDE linear systems

In the present note we consider a type of matrices stemming in the context of the numerical approximation of distributed order fractional differential equations (FDEs): from one side they could look standard, since they are, real, symmetric and positive definite. On the other hand they present specific difficulties which prevent the successful use of classical tools. In particular the associated matrix-sequence, with respect to the matrix-size, is ill-conditioned and it is such that a generating function does not exists, but we face the problem of dealing with a sequence of generating functions with an intricate expression. Nevertheless, we obtain a real interval where the smallest eigenvalue belongs, showing also its asymptotic behavior. We observe that the new bounds improve those already present in the literature and give a more accurate spectral information, which are in fact used in the design of fast numerical algorithms for the associated large linear systems, approximating the given distributed order FDEs. Very satisfactory numerical results are presented and critically discussed, while a section with conclusions and open problems ends the current note.

[1]  S. Capizzano Matrix algebra preconditioners for multilevel Toeplitz matrices are not superlinear , 2002 .

[2]  Arvet Pedas,et al.  On the convergence of spline collocation methods for solving fractional differential equations , 2011, J. Comput. Appl. Math..

[3]  Stefano Serra Capizzano,et al.  A unifying approach to abstract matrix algebra preconditioning , 1999, Numerische Mathematik.

[4]  Albrecht Böttcher,et al.  Eigenvalues of Hermitian Toeplitz matrices with smooth simple-loop symbols , 2015 .

[5]  Carlo Garoni,et al.  Generalized locally Toeplitz sequences : Theory and applications , 2017 .

[6]  Stefano Serra,et al.  On the extreme eigenvalues of hermitian (block) toeplitz matrices , 1998 .

[7]  Hong Wang,et al.  A superfast-preconditioned iterative method for steady-state space-fractional diffusion equations , 2013, J. Comput. Phys..

[8]  Han Zhou,et al.  A class of second order difference approximations for solving space fractional diffusion equations , 2012, Math. Comput..

[9]  Carlo Garoni,et al.  Generalized Locally Toeplitz Sequences: Theory and Applications: Volume I , 2017 .

[10]  S. Serra New PCG based algorithms for the solution of Hermitian Toeplitz systems , 1995 .

[11]  Zhiping Mao,et al.  A Spectral Method (of Exponential Convergence) for Singular Solutions of the Diffusion Equation with General Two-Sided Fractional Derivative , 2018, SIAM J. Numer. Anal..

[12]  採編典藏組 Society for Industrial and Applied Mathematics(SIAM) , 2008 .

[13]  M. Meerschaert,et al.  Finite difference approximations for fractional advection-dispersion flow equations , 2004 .

[14]  Stefano Serra Capizzano,et al.  Spectral analysis and structure preserving preconditioners for fractional diffusion equations , 2016, J. Comput. Phys..

[15]  Stefano Serra Capizzano,et al.  The rate of convergence of Toeplitz based PCG methods for second order nonlinear boundary value problems , 1999, Numerische Mathematik.

[16]  Albrecht Böttcher,et al.  Eigenvectors of Hermitian Toeplitz matrices with smooth simple-loop symbols , 2016 .

[17]  Stefano Serra,et al.  Multigrid methods for toeplitz matrices , 1991 .

[18]  A. Böttcher,et al.  On the condition numbers of large semidefinite Toeplitz matrices , 1998 .

[19]  Albrecht Böttcher,et al.  Spectral properties of banded Toeplitz matrices , 1987 .

[20]  Stefano Serra,et al.  A Korovkin-type theory for finite Toeplitz operators via matrix algebras , 1999 .

[21]  O. Axelsson,et al.  On the rate of convergence of the preconditioned conjugate gradient method , 1986 .

[22]  Dongdong Wang,et al.  A finite element formulation preserving symmetric and banded diffusion stiffness matrix characteristics for fractional differential equations , 2018 .

[23]  Stefano Serra Capizzano,et al.  Matrix algebra preconditioners for multilevel Toeplitz systems do not insure optimal convergence rate , 2004, Theor. Comput. Sci..

[24]  Fawang Liu,et al.  Stability and convergence of a finite volume method for the space fractional advection-dispersion equation , 2014, J. Comput. Appl. Math..

[25]  V. Ervin,et al.  Variational formulation for the stationary fractional advection dispersion equation , 2006 .

[26]  Daniel B. Szyld,et al.  An introduction to iterative Toeplitz solvers , 2009, Math. Comput..

[27]  Stefano Serra Capizzano,et al.  Toeplitz Preconditioners Constructed from Linear Approximation Processes , 1999, SIAM J. Matrix Anal. Appl..

[28]  Hendrik Speleers,et al.  Robust and optimal multi-iterative techniques for IgA Galerkin linear systems , 2015 .

[29]  Zhiping Mao,et al.  A Generalized Spectral Collocation Method with Tunable Accuracy for Fractional Differential Equations with End-Point Singularities , 2017, SIAM J. Sci. Comput..

[30]  A. Wathen,et al.  Iterative Methods for Toeplitz Systems , 2005 .

[31]  Stefano Serra Capizzano,et al.  Spectral Analysis and Multigrid Methods for Finite Volume Approximations of Space-Fractional Diffusion Equations , 2018, SIAM J. Sci. Comput..

[32]  Hendrik Speleers,et al.  Symbol-Based Multigrid Methods for Galerkin B-Spline Isogeometric Analysis , 2017, SIAM J. Numer. Anal..

[33]  S. Serra-Capizzano,et al.  Symbol-based preconditioning for Riesz distributed-order space-fractional diffusion equations , 2021 .

[34]  Stefano Serra Capizzano,et al.  Numerische Mathematik Convergence analysis of two-grid methods for elliptic Toeplitz and PDEs Matrix-sequences , 2002 .

[35]  Stefano Serra Capizzano,et al.  Any Circulant-Like Preconditioner for Multilevel Matrices Is Not Superlinear , 2000, SIAM J. Matrix Anal. Appl..

[36]  Eric Darve,et al.  Isogeometric collocation method for the fractional Laplacian in the 2D bounded domain , 2018, Computer Methods in Applied Mechanics and Engineering.