Impact-Seismic Investigations of the InSight Mission

Impact investigations will be an important aspect of the InSight mission. One of the scientific goals of the mission is a measurement of the current impact rate at Mars. Impacts will additionally inform the major goal of investigating the interior structure of Mars.In this paper, we review the current state of knowledge about seismic signals from impacts on the Earth, Moon, and laboratory experiments. We describe the generalized physical models that can be used to explain these signals. A discussion of the appropriate source time function for impacts is presented, along with spectral characteristics including the cutoff frequency and its dependence on impact momentum. Estimates of the seismic efficiency (ratio between seismic and impact energies) vary widely. Our preferred value for the seismic efficiency at Mars is 5×10−4$5 \times 10^{- 4}$, which we recommend using until we can measure it during the InSight mission, when seismic moments are not used directly. Effects of the material properties at the impact point and at the seismometer location are considered. We also discuss the processes by which airbursts and acoustic waves emanate from bolides, and the feasibility of detecting such signals.We then consider the case of impacts on Mars. A review is given of the current knowledge of present-day cratering on Mars: the current impact rate, characteristics of those impactors such as velocity and directions, and the morphologies of the craters those impactors create. Several methods of scaling crater size to impact energy are presented. The Martian atmosphere, although thin, will cause fragmentation of impactors, with implications for the resulting seismic signals.We also benchmark several different seismic modeling codes to be used in analysis of impact detections, and those codes are used to explore the seismic amplitude of impact-induced signals as a function of distance from the impact site. We predict a measurement of the current impact flux will be possible within the timeframe of the prime mission (one Mars year) with the detection of ∼ a few to several tens of impacts. However, the error bars on these predictions are large.Specific to the InSight mission, we list discriminators of seismic signals from impacts that will be used to distinguish them from marsquakes. We describe the role of the InSight Impacts Science Theme Group during mission operations, including a plan for possible night-time meteor imaging. The impacts detected by these methods during the InSight mission will be used to improve interior structure models, measure the seismic efficiency, and calculate the size frequency distribution of current impacts.

[1]  Satoshi Tanaka,et al.  Evaluation of deep moonquake source parameters: Implication for fault characteristics and thermal state , 2017 .

[2]  Wolfgang Friederich,et al.  COMPLETE SYNTHETIC SEISMOGRAMS FOR A SPHERICALLY SYMMETRIC EARTH BY A NUMERICAL COMPUTATION OF THE GREEN'S FUNCTION IN THE FREQUENCY DOMAIN , 1995 .

[3]  Sami W. Asmar,et al.  InSight: A Discovery Class Mission to Explore the Interior of Mars , 2014 .

[4]  L. Jorda,et al.  A new method to predict meteor showers. I. Description of the model , 2005 .

[5]  D. Drob,et al.  Evidence for a meteoritic origin of the September 15, 2007, Carancas crater , 2008 .

[6]  Timothy H. McConnochie,et al.  Mars Reconnaissance Orbiter Mars Color Imager (MARCI): Instrument description, calibration, and performance , 2009 .

[7]  J. Tromp,et al.  Analysis of Regolith Properties Using Seismic Signals Generated by InSight’s HP3 Penetrator , 2017 .

[8]  R. Jaumann,et al.  HRSC: the High Resolution Stereo Camera of Mars Express , 2004 .

[9]  F. Press,et al.  New Seismic Data on the State of the Deep Lunar Interior , 1973, Science.

[10]  M. Golombek,et al.  Predicted Seismic Signatures of Recent Dated Martian Impact Events: Implications for the InSight Lander , 2015 .

[11]  G. Schwarze,et al.  The high-resolution stereo camera ( HRSC ) experiment on Mars Express : Instrument aspects and experiment conduct from interplanetary cruise through the nominal mission , 2007 .

[12]  M. Robinson,et al.  Ranger and Apollo S-IVB spacecraft impact craters , 2016 .

[13]  Brian W. Stump,et al.  Identification of Mining Blasts at Mid- to Far-regional Distances Using Low Frequency Seismic Signals , 2002 .

[14]  J. Svoreň,et al.  A computer program for calculation of a theoretical meteor-stream radiant , 1998 .

[15]  Martin Knapmeyer,et al.  Influence of Body Waves, Instrumentation Resonances, and Prior Assumptions on Rayleigh Wave Ellipticity Inversion for Shallow Structure at the InSight Landing Site , 2018, Space Science Reviews.

[16]  William K. Hartmann,et al.  Relative crater production rates on planets , 1977 .

[17]  Simon C. Stähler,et al.  AxiSEM: broadband 3-D seismic wavefields in axisymmetric media , 2014 .

[18]  T. L. Becker,et al.  ISIS Support for NASA Mission Instrument Ground Data Processing Systems , 2013 .

[19]  L. Jackson,et al.  Analysis of a crater‐forming meteorite impact in Peru , 2008 .

[20]  W. Hartmann,et al.  Martian cratering 11. Utilizing decameter scale crater populations to study Martian history , 2017 .

[21]  J. Bell,et al.  Measurement of the meteoroid flux at Mars , 2007 .

[22]  D. L. Anderson,et al.  The Viking Seismic Experiment , 1976, Science.

[23]  M. Golombek,et al.  An Investigation of the Mechanical Properties of Some Martian Regolith Simulants with Respect to the Surface Properties at the InSight Mission Landing Site , 2017, Space Science Reviews.

[24]  A. F. C. Haldemann,et al.  Assessment of Mars Exploration Rover landing site predictions , 2005, Nature.

[25]  H. Melosh,et al.  Effects of atmospheric breakup on crater field formation , 1980 .

[26]  P. Lognonné,et al.  10 – Normal Modes of the Earth and Planets , 2002 .

[27]  Doris Breuer,et al.  Present‐Day Mars' Seismicity Predicted From 3‐D Thermal Evolution Models of Interior Dynamics , 2017 .

[28]  William R. Walter,et al.  Regional moment:magnitude relations for earthquakes and explosions , 1993 .

[29]  Mark S. Robinson,et al.  Coordinates of anthropogenic features on the Moon , 2017 .

[30]  L. Edwards,et al.  Context Camera Investigation on board the Mars Reconnaissance Orbiter , 2007 .

[31]  P. Vacher,et al.  A Bayesian approach to infer radial models of temperature and anisotropy in the transition zone from surface wave dispersion curves , 2013 .

[32]  M. Wieczorek,et al.  Nonuniform cratering of the Moon and a revised crater chronology of the inner Solar System , 2011 .

[33]  S. Debei,et al.  The Colour and Stereo Surface Imaging System (CaSSIS) for the ExoMars Trace Gas Orbiter , 2017 .

[34]  M. Golombek,et al.  Erratum to: An Investigation of the Mechanical Properties of Some Martian Regolith Simulants with Respect to the Surface Properties at the InSight Mission Landing Site , 2017 .

[35]  G. Neukum,et al.  Crater Size Distributions and Impact Probabilities on Earth from Lunar, Terrestrial Planeta, and Asteroid Cratering Data , 1994 .

[36]  G. Latham,et al.  Seismic structure of the moon - A summary of current status , 1976 .

[37]  P. Lognonné,et al.  Very preliminary reference Moon model , 2011 .

[38]  P. Lognonné,et al.  85.16 Higher order perturbation theory: 3D synthetic seismogram package , 2003 .

[39]  K. Anderson,et al.  Seismic scattering and shallow structure of the moon in oceanus procellarum , 1974 .

[40]  R. Kirk,et al.  Crater Degradation and Surface Erosion Rates at the InSight Landing Site, Western Elysium Planitia, Mars , 2016 .

[41]  T. Spohn,et al.  How large are present‐day heat flux variations across the surface of Mars? , 2016 .

[42]  S. Stewart,et al.  Modeling impact cratering in layered surfaces , 2007 .

[43]  N. Shishkin Seismic efficiency of a contact explosion and a high-velocity impact , 2007 .

[44]  J. Peterson,et al.  Observations and modeling of seismic background noise , 1993 .

[45]  P. Lognonne,et al.  Large impacts detected by the Apollo seismometers: Impactor mass and source cutoff frequency estimations , 2011 .

[46]  Hadley,et al.  Seismic source functions and attenuation from local and teleseismic observations of the NTS Events Jorum and Handley. Quarterly technical report, 22 November 1978-31 January 1979 , 1981 .

[47]  P. Lognonné 10.03 – Planetary Seismology , 2015 .

[48]  B. Mosser,et al.  Planetary seismology , 1993 .

[49]  Yadvinder Malhi,et al.  Energy and water dynamics of a central Amazonian rain forest , 2002 .

[50]  Kenji Kawai,et al.  Complete synthetic seismograms up to 2 Hz for transversely isotropic spherically symmetric media , 2006 .

[51]  Mark T. Lemmon,et al.  Extraterrestrial meteors: A martian meteor and its parent comet , 2005, Nature.

[52]  David Mimoun,et al.  Evaluating the Wind-Induced Mechanical Noise on the InSight Seismometers , 2016, 1612.04308.

[53]  Noel Gorelick,et al.  Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi‐spectral data , 2011 .

[54]  K. Wünnemann,et al.  Scaling of impact crater formation on planetary surfaces , 2010 .

[55]  J. Richardson,et al.  An Experimental Investigation of the Seismic Signal Produced by Hypervelocity Impacts , 2013 .

[56]  D. Komatitsch,et al.  The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures , 1998, Bulletin of the Seismological Society of America.

[57]  Alfred S. McEwen,et al.  Changes in blast zone albedo patterns around new martian impact craters , 2016 .

[58]  M. P. Goda,et al.  The fragmentation of small asteroids in the atmosphere , 1993 .

[59]  R. Kirk,et al.  Near Surface Stratigraphy and Regolith Production in Southwestern Elysium Planitia, Mars: Implications for Hesperian-Amazonian Terrains and the InSight Lander Mission , 2017 .

[60]  P. J. Register,et al.  A fragment-cloud model for asteroid breakup and atmospheric energy deposition , 2017 .

[61]  K. Miljković,et al.  Impact cutoff frequency: Momentum scaling law inverted from Apollo seismic data , 2015 .

[62]  N. A. Haskell Analytic Approximation for the Elastic Radiation from a Contained Underground Explosion , 1967 .

[63]  K. Holsapple,et al.  A crater and its ejecta: An interpretation of Deep Impact , 2007 .

[64]  G. Neukum,et al.  Mars: a standard crater curve and possible new time scale. , 1976, Science.

[65]  D. L. Anderson,et al.  Martian wind activity detected by a seismometer at Viking Lander 2 site , 1979 .

[66]  Alfred S. McEwen,et al.  Impact airblast triggers dust avalanches on Mars , 2012 .

[67]  F. Gilbert,et al.  An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra , 1975, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[68]  C. Johnson,et al.  Moon meteoritic seismic hum: Steady state prediction , 2009 .

[69]  William K. Hartmann,et al.  Bolides in the present and past martian atmosphere and effects on cratering processes , 2003 .

[70]  P. Bland,et al.  Morphology and population of binary asteroid impact craters , 2013 .

[71]  R. Malhotra,et al.  The current impact flux on Mars and its seasonal variation , 2015, 1503.03885.

[72]  N. Teanby,et al.  Bolide Airbursts as a Seismic Source for the 2018 Mars InSight Mission , 2017 .

[73]  Oded Aharonson,et al.  The production of small primary craters on Mars and the Moon , 2010, 1309.2849.

[74]  Alfred S. McEwen,et al.  The current martian cratering rate , 2010 .

[75]  Maren Böse,et al.  Magnitude Scales for Marsquakes , 2018, Bulletin of the Seismological Society of America.

[76]  K. Aki,et al.  Quantitative Seismology, 2nd Ed. , 2002 .

[77]  M. Golombek,et al.  Recently Formed Crater Clusters on Mars , 2019, Journal of Geophysical Research: Planets.

[78]  Mars/Moon Cratering Rate Ratio Estimates , 2001 .

[79]  P. Pomeroy Long period seismic waves from large, near-surface nuclear explosions , 1963 .

[80]  Justin N. Maki,et al.  The Mars Science Laboratory Engineering Cameras , 2012 .

[81]  Jean‐Pierre Williams,et al.  Acoustic environment of the Martian surface , 2001 .

[82]  Verne R. Oberbeck,et al.  Thickness determinations of the lunar surface layer from lunar impact craters. , 1968 .

[83]  H. Melosh,et al.  Earth Impact Effects Program: A Web‐based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth , 2005 .

[84]  Kenneth L. Tanaka,et al.  A Prediction of Mars Seismicity from Surface Faulting , 1992, Science.

[85]  C. Chyba,et al.  The 1908 Tunguska explosion: atmospheric disruption of a stony asteroid , 1993, Nature.

[86]  M. Golombek,et al.  Rayleigh Wave Ellipticity Modeling and Inversion for Shallow Structure at the Proposed InSight Landing Site in Elysium Planitia, Mars , 2017 .

[87]  P. Davis Meteoroid Impacts as Seismic Sources on Mars , 1993 .

[88]  David P. O'Brien,et al.  The global effects of impact-induced seismic activity on fractured asteroid surface morphology , 2005 .

[89]  F. Press,et al.  Seismic Data from Man-Made Impacts on the Moon , 1970, Science.

[90]  David Mimoun,et al.  Single-station and single-event marsquake location and inversion for structure using synthetic Martian waveforms , 2016 .

[91]  Peter M. Shearer,et al.  Introduction to Seismology: Acknowledgment , 2009 .

[92]  Philippe Lognonné,et al.  A new seismic model of the Moon: implications for structure, thermal evolution and formation of the Moon , 2003 .

[93]  William K. Hartmann,et al.  Martian cratering 8: Isochron refinement and the chronology of Mars , 2005 .

[94]  David Mimoun,et al.  The Noise Model of the SEIS Seismometer of the InSight Mission to Mars , 2017 .

[95]  W. Watters,et al.  Morphometry of small recent impact craters on Mars: Size and terrain dependence, short‐term modification , 2015 .

[96]  D. Revelle,et al.  A meteorite crater on Earth formed on September 15, 2007: The Carancas hypervelocity impact , 2009 .

[97]  Robert B. Herrmann,et al.  Computer Programs in Seismology: An Evolving Tool for Instruction and Research , 2013 .

[98]  K. Holsapple,et al.  Point source solutions and coupling parameters in cratering mechanics , 1987 .

[99]  W. Banerdt,et al.  Verifying single-station seismic approaches using Earth-based data: Preparation for data return from the InSight mission to Mars , 2015 .

[100]  Ari Ben-Menahem,et al.  Source parameters of the siberian explosion of June 30, 1908, from analysis and synthesis of seismic signals at four stations , 1975 .

[101]  O. Popova,et al.  Martian cratering 12. Utilizing primary crater clusters to study crater populations and meteoroid properties , 2018 .

[102]  A. Trebi-Ollennu,et al.  Geology and Physical Properties Investigations by the InSight Lander , 2018, Space Science Reviews.

[103]  Kai Wünnemann,et al.  The present-day flux of large meteoroids on the lunar surface—A synthesis of models and observational techniques , 2012 .

[104]  Ernst Hauber,et al.  Working models for spatial distribution and level of Mars' seismicity , 2006 .

[105]  A. McEwen,et al.  The morphology of small fresh craters on Mars and the Moon , 2014 .

[106]  Christian Heipke,et al.  The High Resolution Stereo Camera (HRSC) of Mars Express and its approach to science analysis and mapping for Mars and its satellites , 2016 .

[107]  Jeremie Vaubaillon,et al.  A confidence index for forecasting of meteor showers , 2017, 1702.01791.

[108]  M. Mellon,et al.  The Martian Surface: Martian surface properties from joint analysis of orbital, Earth-based, and surface observations , 2008 .

[109]  Robert J. Geller,et al.  Computation of synthetic seismograms and their partial derivatives for heterogeneous media with arbitrary natural boundary conditions using the Direct Solution Method , 1994 .

[110]  B. Mosser,et al.  Excitation of Jovian Seismic Waves by the Shoemaker-Levy 9 Cometary Impact , 1994 .

[111]  P. Lognonné,et al.  Impact seismology on terrestrial and giant planets , 2015 .

[112]  R. Lorenz,et al.  Empirical recurrence rates for ground motion signals on planetary surfaces , 2017, 1704.05924.

[113]  Gottfried Schwarz,et al.  The high-resolution stereo camera (HRSC) experiment on Mars Express: Instrument aspects and experiment conduct from interplanetary cruise through the nominal mission , 2007 .

[114]  M. Golombek A REVISION OF MARS SEISMICITY FROM SURFACE FAULTING: , 2001 .

[115]  F. Press,et al.  Velocity structure and properties of the lunar crust , 1972 .

[116]  A. Lucas,et al.  Sediment flux from the morphodynamics of elongating linear dunes , 2015 .

[117]  Raymond E. Arvidson,et al.  Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO) , 2007 .

[118]  Kevin R. Housen,et al.  Some recent advances in the scaling of impact and explosion cratering , 1987 .

[119]  M. Golombek,et al.  A Pre-Landing Assessment of Regolith Properties at the InSight Landing Site , 2018, Space Science Reviews.

[120]  M. van Driel,et al.  A probabilistic framework for single-station location of seismicity on Earth and Mars , 2017 .

[121]  M. Golombek,et al.  Pre-mission InSights on the Interior of Mars , 2019, Space Science Reviews.

[122]  Jeroen Tromp,et al.  Planned Products of the Mars Structure Service for the InSight Mission to Mars , 2017 .

[123]  S. Dickenshied,et al.  JMARS - A Planetary GIS , 2009 .

[124]  L. Rolland,et al.  Modeling of atmospheric-coupled Rayleigh waves on planets with atmosphere: From Earth observation to Mars and Venus perspectives. , 2016, The Journal of the Acoustical Society of America.

[125]  David W. Eaton,et al.  Seismic observations of meteors: Coupling theory and observations , 2008 .

[126]  M. Arakawa,et al.  Experimental study on impact-induced seismic wave propagation through granular materials , 2015 .

[127]  Tilman Spohn,et al.  The interior structure of Mars: Implications from SNC meteorites , 1997 .

[128]  Henry E. Bass,et al.  Absorption of sound in the Martian atmosphere , 2001 .

[129]  Véronique Dehant,et al.  Geodesy constraints on the interior structure and composition of Mars , 2011 .

[130]  Kenneth S Edgett,et al.  Present-Day Impact Cratering Rate and Contemporary Gully Activity on Mars , 2006, Science.

[131]  Kai Wünnemann,et al.  Quantitative analysis of impact-induced seismic signals by numerical modeling , 2017 .

[132]  Amir Khan,et al.  Geophysical evidence for melt in the deep lunar interior and implications for lunar evolution , 2013 .

[133]  N. Reul,et al.  Importance of the sea surface curvature to interpret the normalized radar cross section , 2007 .

[134]  S. May Meteor Impact Detection on Mars with Change Detection Framework , 2018, IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium.

[135]  S. Sasaki,et al.  Internal structure of the Moon inferred from Apollo seismic data and selenodetic data from GRAIL and LLR , 2015 .

[136]  N. Artemieva,et al.  The Canyon Diablo impact event: Projectile motion through the atmosphere , 2009 .

[137]  Boris A. Ivanov,et al.  Mars/Moon Cratering Rate Ratio Estimates , 2001 .

[138]  B. Ivanov,et al.  Numerical modeling of the formation of large impact craters , 2002 .

[139]  R. Geller,et al.  A new method for computing highly accurate DSM synthetic seismograms , 1995 .

[140]  S. Ruff,et al.  Bright and dark regions on Mars: Particle size and mineralogical characteristics based on thermal emission spectrometer data , 2002 .

[141]  Peter M. Shearer,et al.  Introduction to Seismology , 2019 .

[142]  Klaus Mosegaard,et al.  An inquiry into the lunar interior: A nonlinear inversion of the Apollo lunar seismic data , 2002 .

[143]  J. Borovička,et al.  Very low strengths of interplanetary meteoroids and small asteroids , 2011 .

[144]  B. Baldwin,et al.  Ablation and breakup of large meteoroids during atmospheric entry , 1971 .

[145]  P. J. Register,et al.  Asteroid fragmentation approaches for modeling atmospheric energy deposition , 2017 .

[146]  Y. Nakamura Timing problem with the Lunar Module impact data as recorded by the LSPE and corrected near‐surface structure at the Apollo 17 landing site , 2011 .

[147]  Ian Joughin,et al.  An automated, open-source pipeline for mass production of digital elevation models (DEMs) from very-high-resolution commercial stereo satellite imagery , 2016 .

[148]  M. Malin,et al.  The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission , 2004 .

[149]  J. Gillies,et al.  A wind tunnel examination of shear stress partitioning for an assortment of surface roughness distributions , 2008 .

[150]  James D. Walker Loading sources for seismological investigation of asteroids and comets , 2003 .

[151]  M. Klimesh,et al.  Mars Exploration Rover engineering cameras , 2003 .

[152]  R. Kirk,et al.  High-resolution topomapping of candidate MER landing sites with Mars Orbiter Camera narrow-angle images , 2003 .

[153]  J. Borovička,et al.  A 500-kiloton airburst over Chelyabinsk and an enhanced hazard from small impactors , 2013, Nature.

[154]  C. Russell,et al.  The InSight Mission for 2018 , 2017 .

[155]  A. McGarr,et al.  Meteoroid impacts as sources of seismicity on the moon , 1969 .

[156]  K. Gwinner,et al.  Selection of the InSight Landing Site , 2017 .

[157]  A. McEwen,et al.  Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE) , 2007 .

[158]  M. Wieczorek,et al.  Lateral variations of lunar crustal thickness from the Apollo seismic data set , 2006 .

[159]  H. J. Moore,et al.  Missile Inpacts as Sources of Seismic Energy on the Moon , 1970, Science.

[160]  N. Schmerr,et al.  The Seismic Signatures of Impact Events on Mars: Implications for the InSight Lander , 2016 .

[161]  N. Teanby,et al.  Predicted detection rates of regional-scale meteorite impacts on Mars with the InSight short-period seismometer , 2015 .

[162]  K. Holsapple THE SCALING OF IMPACT PROCESSES IN PLANETARY SCIENCES , 1993 .

[163]  P. Lognonné,et al.  10.03 – Planetary Seismology , 2007 .

[164]  B. A. Ivanov,et al.  Implementation of dynamic strength models into 2D hydrocodes : Applications for atmospheric breakup and impact cratering , 1997 .

[165]  Raphaël F. Garcia,et al.  Finite-Difference Modeling of Acoustic and Gravity Wave Propagation in Mars Atmosphere: Application to Infrasounds Emitted by Meteor Impacts , 2017 .

[166]  T. Spohn,et al.  A seismic model of the lunar mantle and constraints on temperature and mineralogy , 2006 .

[167]  Yosio Nakamura,et al.  New identification of deep moonquakes in the Apollo lunar seismic data , 2003 .

[168]  Bruce A. Cantor,et al.  An overview of the 1985-2006 Mars Orbiter Camera science investigation , 2010 .

[169]  G. C. Werth,et al.  Comparison of amplitudes of seismic waves from nuclear explosions in four mediums , 1963 .

[170]  James Wookey,et al.  Seismic detection of meteorite impacts on Mars , 2011 .