Markov Chain Monte Carlo for Linear Mixed Models

University of Minnesota Ph.D. dissertation. December 2015. Major: Statistics. Advisor: Galin Jones. 1 computer file (PDF); vii, 128 pages.

[1]  G. C. Wei,et al.  A Monte Carlo Implementation of the EM Algorithm and the Poor Man's Data Augmentation Algorithms , 1990 .

[2]  J. Rosenthal,et al.  General state space Markov chains and MCMC algorithms , 2004, math/0404033.

[3]  Gareth O. Roberts,et al.  Convergence of Conditional Metropolis-Hastings Samplers , 2014, Advances in Applied Probability.

[4]  Brian S. Caffo,et al.  Ascent-Based Monte Carlo EM , 2003 .

[5]  Hee Min Choi,et al.  The Polya-Gamma Gibbs sampler for Bayesian logistic regression is uniformly ergodic , 2013 .

[6]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[7]  Gersende Fort,et al.  Convergence of the Monte Carlo expectation maximization for curved exponential families , 2003 .

[8]  Scott L. Zeger,et al.  Generalized linear models with random e ects: a Gibbs sampling approach , 1991 .

[9]  New York Dover,et al.  ON THE CONVERGENCE PROPERTIES OF THE EM ALGORITHM , 1983 .

[10]  Brady T. West,et al.  Linear Mixed Models: A Practical Guide Using Statistical Software , 2006 .

[11]  Charles J. Geyer,et al.  Likelihood and Exponential Families , 1990 .

[12]  N. Breslow,et al.  Approximate inference in generalized linear mixed models , 1993 .

[13]  J. Booth,et al.  Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm , 1999 .

[14]  T. Louis Finding the Observed Information Matrix When Using the EM Algorithm , 1982 .

[15]  Murray Aitkin,et al.  Variance Component Models with Binary Response: Interviewer Variability , 1985 .

[16]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[17]  P. Thall,et al.  Some covariance models for longitudinal count data with overdispersion. , 1990, Biometrics.

[18]  G. Casella,et al.  The Bayesian Lasso , 2008 .

[19]  Michael Lavine,et al.  The Multiset Sampler , 2009 .

[20]  A. Desideri,et al.  Modeling healthcare costs in simultaneous presence of asymmetry, heteroscedasticity and correlation , 2013 .

[21]  James S. Hodges,et al.  Richly Parameterized Linear Models: Additive, Time Series, and Spatial Models Using Random Effects , 2013 .

[22]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[23]  Gareth O. Roberts,et al.  Markov Chains and De‐initializing Processes , 2001 .

[24]  C. McCulloch,et al.  Generalized Linear Mixed Models , 2005 .

[25]  S. F. Jarner,et al.  Geometric ergodicity of Metropolis algorithms , 2000 .

[26]  C. McCulloch Maximum Likelihood Variance Components Estimation for Binary Data , 1994 .

[27]  C. McCulloch Maximum Likelihood Algorithms for Generalized Linear Mixed Models , 1997 .

[28]  Galin L. Jones,et al.  Honest Exploration of Intractable Probability Distributions via Markov Chain Monte Carlo , 2001 .

[29]  Galin L. Jones On the Markov chain central limit theorem , 2004, math/0409112.

[30]  Galin L. Jones,et al.  Fixed-Width Output Analysis for Markov Chain Monte Carlo , 2006, math/0601446.

[31]  Roderick J. A. Little,et al.  Statistical Analysis with Missing Data , 1988 .

[32]  R. Tweedie,et al.  Rates of convergence of the Hastings and Metropolis algorithms , 1996 .

[33]  C. Geyer,et al.  Correction: Variable transformation to obtain geometric ergodicity in the random-walk Metropolis algorithm , 2012, 1302.6741.

[34]  Dongchu Sun,et al.  PROPRIETY OF POSTERIORS WITH IMPROPER PRIORS IN HIERARCHICAL LINEAR MIXED MODELS , 2001 .

[35]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[37]  A. Agresti,et al.  Categorical Data Analysis , 1991, International Encyclopedia of Statistical Science.

[38]  J. Booth,et al.  Standard Errors of Prediction in Generalized Linear Mixed Models , 1998 .

[39]  G. Molenberghs,et al.  Likelihood Ratio, Score, and Wald Tests in a Constrained Parameter Space , 2007 .

[40]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[41]  James P. Hobert,et al.  The Data Augmentation Algorithm: Theory and Methodology , 2011 .

[42]  B. Efron,et al.  Data Analysis Using Stein's Estimator and its Generalizations , 1975 .

[43]  R. Cogburn,et al.  The central limit theorem for Markov processes , 1972 .

[44]  A. Agresti,et al.  A Correlated Probit Model for Joint Modeling of Clustered Binary and Continuous Responses , 2001 .

[45]  C. Geyer On the Convergence of Monte Carlo Maximum Likelihood Calculations , 1994 .

[46]  P. McCullagh,et al.  Generalized Linear Models , 1972, Predictive Analytics.

[47]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[48]  R. Wolfinger,et al.  Generalized linear mixed models a pseudo-likelihood approach , 1993 .

[49]  R. Tweedie,et al.  Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms , 1996 .

[50]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[51]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[52]  E. Egelman,et al.  Composition and mass of the bacteriophage phi29 prohead and virion. , 2001, Journal of structural biology.

[53]  Herwig Friedl,et al.  Negative binomial loglinear mixed models , 2003 .

[54]  K. Chan,et al.  Monte Carlo EM Estimation for Time Series Models Involving Counts , 1995 .