The meshless local Petrov–Galerkin (MLPG) method for the generalized two-dimensional non-linear Schrödinger equation

Abstract In this paper the meshless local Petrov–Galerkin (MLPG) method is presented for the numerical solution of the two-dimensional non-linear Schrodinger equation. The method is based on the local weak form and the moving least squares (MLS) approximation. For the MLS, nodal points spread over the analyzed domain are utilized to approximate the interior and boundary variables. A time stepping method is employed for the time derivative. To deal with the non-linearity, we use a predictor–corrector method. A very simple and efficient method is presented for evaluation the local domain integrals. Finally numerical results are presented for some examples to demonstrate the accuracy, efficiency and high rate of convergence of this method.

[1]  Vladimir Sladek,et al.  Analysis of orthotropic thick plates by meshless local Petrov–Galerkin (MLPG) method , 2006 .

[2]  M. Dehghan The one-dimensional heat equation subject to a boundary integral specification , 2007 .

[3]  A. Deeks,et al.  A hybrid meshless local Petrov-Galerkin method for unbounded domains. , 2007 .

[4]  Qingwei Ma,et al.  Meshless local Petrov-Galerkin method for two-dimensional nonlinear water wave problems , 2005 .

[5]  G. Y. Li,et al.  A modified meshless local Petrov-Galerkin method to elasticity problems in computer modeling and simulation , 2006 .

[6]  Mehdi Dehghan,et al.  Identification of a time‐dependent coefficient in a partial differential equation subject to an extra measurement , 2005 .

[7]  Christophe Besse,et al.  Numerical schemes for the simulation of the two-dimensional Schrödinger equation using non-reflecting boundary conditions , 2004, Math. Comput..

[8]  Mehdi Dehghan,et al.  Implicit Collocation Technique for Heat Equation with Non-Classic Initial Condition , 2006 .

[9]  A. V. Popov,et al.  Application of the parabolic wave equation to X-ray diffraction optics , 1995 .

[10]  Mehdi Dehghan,et al.  A numerical method for two-dimensional Schrödinger equation using collocation and radial basis functions , 2007, Comput. Math. Appl..

[11]  Li Guangyao,et al.  A simple and less-costly meshless local Petrov-Galerkin (MLPG) method for the dynamic fracture problem , 2006 .

[12]  Jiten C. Kalita,et al.  A semi-discrete higher order compact scheme for the unsteady two-dimensional Schrödinger equation , 2006 .

[13]  Mehdi Dehghan,et al.  On the solution of an initial‐boundary value problem that combines Neumann and integral condition for the wave equation , 2005 .

[14]  Satya N. Atluri,et al.  A locking-free meshless local Petrov-Galerkin formulation for thick and thin plates , 2005 .

[15]  Murat Subaşi,et al.  On the finite‐differences schemes for the numerical solution of two dimensional Schrödinger equation , 2002 .

[16]  Demosthenes Polyzos,et al.  A MLPG (LBIE) METHOD FOR SOLVING FREQUENCY DOMAIN ELASTIC PROBLEMS , 2003 .

[17]  T. Krishnamurthy,et al.  A radial basis function approach in the meshless local Petrov-Galerkin method for Euler-Bernoulli beam problems , 2004 .

[18]  M. Schanz,et al.  Meshless local Petrov-Galerkin method for continuously nonhomogeneous linear viscoelastic solids , 2006 .

[19]  E. J. Sellountos,et al.  A MLPG (LBIE) approach in combination with BEM , 2005 .

[20]  Vladimir Sladek,et al.  Inverse heat conduction problems by meshless local Petrov–Galerkin method , 2006 .

[21]  R. Pecher Efficient cubature formulae for MLPG and related methods , 2006 .

[22]  Wei-Ping Huang,et al.  The finite-difference vector beam propagation method: analysis and assessment , 1992 .

[23]  S. Atluri The meshless method (MLPG) for domain & BIE discretizations , 2004 .

[24]  Vladimir Sladek,et al.  Meshless local Petrov–Galerkin (MLPG) method for Reissner–Mindlin plates under dynamic load , 2007 .

[25]  Fred D. Tappert,et al.  The parabolic approximation method , 1977 .

[26]  S. Atluri,et al.  A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics , 1998 .

[27]  J. Eberhardsteiner,et al.  Heat Conduction Analysis of 3-D Axisymmetric and Anisotropic FGM Bodies by Meshless Local Petrov–Galerkin Method , 2006 .

[28]  Davide Spinello,et al.  Analysis of electrostatic MEMS using meshless local Petrov-Galerkin (MLPG) method , 2006 .

[29]  Hyun Gyu Kim,et al.  A critical assessment of the truly Meshless Local Petrov-Galerkin (MLPG), and Local Boundary Integral Equation (LBIE) methods , 1999 .

[30]  YuanTong Gu,et al.  A meshless local Petrov-Galerkin (MLPG) method for free and forced vibration analyses for solids , 2001 .

[31]  S. Atluri,et al.  The meshless local Petrov-Galerkin (MLPG) method , 2002 .

[32]  Anton Arnold,et al.  Numerically Absorbing Boundary Conditions for Quantum Evolution Equations , 1998, VLSI Design.

[33]  Dean Hu,et al.  A new meshless method based on MLPG for elastic dynamic problems , 2006 .

[34]  W. Barry,et al.  A Wachspress Meshless Local Petrov–Galerkin method , 2004 .

[35]  V. Vavourakis,et al.  A MLPG(LBIE) numerical method for solving 2D incompressible and nearly incompressible elastostatic problems , 2006 .

[36]  Mehdi Dehghan,et al.  Parameter determination in a partial differential equation from the overspecified data , 2005, Math. Comput. Model..

[37]  J. R. Xiao Local Heaviside weighted MLPG meshless method for two-dimensional solids using compactly supported radial basis functions , 2004 .

[38]  M. Levy Parabolic Equation Methods for Electromagnetic Wave Propagation , 2000 .

[39]  Romesh C. Batra,et al.  Three-Dimensional transient heat conduction in a functionally graded thick plate with a higher-order plate theory and a meshless local Petrov-Galerkin method , 2005 .

[40]  M. Dehghan A computational study of the one‐dimensional parabolic equation subject to nonclassical boundary specifications , 2006 .

[41]  John W. Gillespie,et al.  Meshless solutions of 2D contact problems by subdomain variational inequality and MLPG method with radial basis functions , 2005 .

[42]  W. Ang,et al.  A dual‐reciprocity boundary element solution of a generalized nonlinear Schrödinger equation , 2004 .

[43]  Mehdi Dehghan,et al.  Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices , 2006, Math. Comput. Simul..

[44]  S. Atluri,et al.  The Meshless Local Petrov-Galerkin (MLPG) Method: A Simple \& Less-costly Alternative to the Finite Element and Boundary Element Methods , 2002 .

[45]  Satya N. Atluri,et al.  The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics , 2000 .