Diamond photonics for distributed quantum networks

Abstract The distributed quantum network, in which nodes comprising small but well-controlled quantum states are entangled via photonic channels, has in recent years emerged as a strategy for delivering a range of quantum technologies including secure communications, enhanced sensing and scalable quantum computing. Colour centres in diamond are amongst the most promising candidates for nodes fabricated in the solid-state, offering potential for large scale production and for chip-scale integrated devices. In this review we consider the progress made and the remaining challenges in developing diamond-based nodes for quantum networks. We focus on the nitrogen-vacancy and silicon-vacancy colour centres, which have demonstrated many of the necessary attributes for these applications. We focus in particular on the use of waveguides and other photonic microstructures for increasing the efficiency with which photons emitted from these colour centres can be coupled into a network, and the use of microcavities for increasing the fraction of photons emitted that are suitable for generating entanglement between nodes.

[1]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[2]  F. Jelezko,et al.  Low temperature studies of the excited-state structure of negatively charged nitrogen-vacancy color centers in diamond. , 2009, Physical review letters.

[3]  D. D. Awschalom,et al.  Quantum information processing using quantum dot spins and cavity QED , 1999 .

[4]  Y. Wang,et al.  Quantum error correction in a solid-state hybrid spin register , 2013, Nature.

[5]  Andrei Faraon,et al.  Quantum photonic devices in single-crystal diamond , 2013 .

[6]  Andreas W. Schell,et al.  Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity , 2010, 1008.3504.

[7]  A. Greentree,et al.  Fabrication of single optical centres in diamond—a review , 2010 .

[8]  J. Wrachtrup,et al.  Implantation of labelled single nitrogen vacancy centers in diamond using N15 , 2005, cond-mat/0511722.

[9]  Oliver Benson,et al.  One-by-one coupling of single defect centers in nanodiamonds to high-Q modes of an optical microresonator. , 2008, Nano letters.

[10]  Pieter Kok,et al.  Efficient high-fidelity quantum computation using matter qubits and linear optics , 2005 .

[11]  Toshiro Inubushi,et al.  Germanium-Vacancy Single Color Centers in Diamond , 2015, Scientific Reports.

[12]  I. Gerhardt,et al.  Monolithic diamond optics for single photon detection. , 2010, Applied physics letters.

[13]  Christoph Pauly,et al.  Nanoimplantation and Purcell enhancement of single NV centers in photonic crystal cavities in diamond , 2015, 1503.05666.

[14]  E. A. Curtis,et al.  Microfabricated high-finesse optical cavity with open access and small volume , 2005, quant-ph/0506234.

[15]  Hailin Wang,et al.  A composite microcavity of diamond nanopillar and deformed silica microsphere with enhanced evanescent decay length. , 2010, Optics express.

[16]  M. Lukin,et al.  Quantum Nonlinear Optics with a Germanium-Vacancy Color Center in a Nanoscale Diamond Waveguide. , 2016, Physical review letters.

[17]  I. Bloch Quantum coherence and entanglement with ultracold atoms in optical lattices , 2008, Nature.

[18]  M. Ganzhorn,et al.  Photonic nano-structures on (111)-oriented diamond , 2014, 1403.6063.

[19]  J. M. Smith,et al.  Fabrication of Ultrathin Single‐Crystal Diamond Membranes , 2008 .

[20]  D. Awschalom,et al.  Reduced plasma-induced damage to near-surface nitrogen-vacancy centers in diamond. , 2015, Nano letters.

[21]  T. Kaldewey,et al.  Low-loss broadband antenna for efficient photon collection from a coherent spin in diamond , 2014, 1408.4117.

[22]  Charles Santori,et al.  Optical and spin coherence properties of nitrogen-vacancy centers placed in a 100 nm thick isotopically purified diamond layer. , 2012, Nano letters.

[23]  Michael Siegel,et al.  Superconducting single photon detectors integrated with diamond nanophotonic circuits , 2015 .

[24]  J. D. Thompson,et al.  Efficient fiber-optical interface for nanophotonic devices , 2014, 1409.7698.

[25]  Simon J. Devitt,et al.  Photonic Architecture for Scalable Quantum Information Processing in Diamond , 2013, 1309.4277.

[26]  J. Meijer,et al.  Generation of single color centers by focused nitrogen implantation , 2005 .

[27]  A. A. Fokin,et al.  Hybrid Group IV Nanophotonic Structures Incorporating Diamond Silicon-Vacancy Color Centers. , 2015, Nano letters (Print).

[28]  Mats Larsson,et al.  Composite optical microcavity of diamond nanopillar and silica microsphere. , 2009, Nano letters.

[29]  D. Twitchen,et al.  Electron paramagnetic resonance studies of silicon-related defects in diamond , 2008 .

[30]  S. Gsell,et al.  Electronic transitions of single silicon vacancy centers in the near-infrared spectral region , 2012, 1204.4994.

[31]  Raymond G. Beausoleil,et al.  Vertical distribution of nitrogen-vacancy centers in diamond formed by ion implantation and annealing , 2008, 0812.3905.

[32]  Jason M. Smith,et al.  Femtoliter tunable optical cavity arrays. , 2010, Optics letters.

[33]  D. Hunger,et al.  Scaling laws of the cavity enhancement for nitrogen-vacancy centers in diamond , 2013, 1304.0948.

[34]  Igor Aharonovich,et al.  Diamond-based single-photon emitters , 2011 .

[35]  L. Childress,et al.  A Fabry-Perot Microcavity for Diamond-Based Photonics , 2015, 1508.06588.

[36]  Marko Loncar,et al.  Fabrication of diamond nanowires for quantum information processing applications , 2009, 0908.0352.

[37]  S. C. Benjamin,et al.  Optical generation of matter qubit graph states , 2005, quant-ph/0506110.

[38]  M. Lukin,et al.  Indistinguishable photons from separated silicon-vacancy centers in diamond. , 2014, Physical review letters.

[39]  A hemispherical, high-solid-angle optical micro-cavity for cavity-QED studies. , 2006, Optics express.

[40]  Edward H. Chen,et al.  One-dimensional photonic crystal cavities in single-crystal diamond , 2015 .

[41]  E. Hu,et al.  Coupling of Silicon-Vacancy Centers to a Single Crystal Diamond Cavity , 2012 .

[42]  M. Markham,et al.  Optical properties of a single-colour centre in diamond with a green zero-phonon line , 2011 .

[43]  Charles Santori,et al.  D ec 2 00 8 Coherent interference effects in a nano-assembled opticalcavity-QED system , 2008 .

[44]  Shanying Cui Near-surface Nitrogen Vacancy Centers in Diamond , 2014 .

[45]  J. Tetienne,et al.  Perfect preferential orientation of nitrogen-vacancy defects in a synthetic diamond sample , 2014, 1401.2795.

[46]  Matthias Steiner,et al.  Single-Shot Readout of a Single Nuclear Spin , 2010, Science.

[47]  R. Williams,et al.  Diamond nitrogen-vacancy centers created by scanning focused helium ion beam and annealing , 2013 .

[48]  A. Trichet,et al.  Topographic control of open-access microcavities at the nanometer scale. , 2015, Optics express.

[49]  E. Kohn,et al.  Surface damages in diamond by Ar/O2 plasma and their effect on the electrical and electrochemical characteristics of boron-doped layers , 2010 .

[50]  R. Hanson,et al.  Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center , 2009, 0903.3336.

[51]  Christoph Pauly,et al.  Narrow-band single photon emission at room temperature based on a single Nitrogen-vacancy center coupled to an all-fiber-cavity , 2014, 1407.5825.

[52]  Yumin Shen,et al.  Zero-phonon linewidth of single nitrogen vacancy centers in diamond nanocrystals , 2008 .

[53]  Andrei Faraon,et al.  Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity , 2010, 1012.3815.

[54]  Marko Loncar,et al.  Readout and control of a single nuclear spin with a metastable electron spin ancilla. , 2013, Nature nanotechnology.

[55]  D. Hunger,et al.  Purcell-enhanced single-photon emission from nitrogen-vacancy centers coupled to a tunable microcavity , 2016, 1606.00167.

[56]  Á. Gali,et al.  Proper surface termination for luminescent near-surface NV centers in diamond. , 2014, Nano letters.

[57]  Jeremy L O'Brien,et al.  Diamond-based structures to collect and guide light , 2011 .

[58]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[59]  Alexander Jesacher,et al.  Three dimensional laser microfabrication in diamond using a dual adaptive optics system. , 2011, Optics express.

[60]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[61]  Dirk Englund,et al.  Long-lived NV− spin coherence in high-purity diamond membranes , 2012 .

[62]  F. Jelezko,et al.  Creation efficiency of nitrogen-vacancy centres in diamond , 2010 .

[63]  F. Frost,et al.  Ion beam assisted smoothing of optical surfaces , 2004 .

[64]  Mikhail D. Lukin,et al.  Narrow-linewidth homogeneous optical emitters in diamond nanostructures via silicon ion implantation , 2015, 1512.03820.

[65]  J. Cirac,et al.  Creation of entangled states of distant atoms by interference , 1998, quant-ph/9810013.

[66]  C. Rettner,et al.  Effect of oxygen plasma and thermal oxidation on shallow nitrogen-vacancy centers in diamond , 2014 .

[67]  D. Englund,et al.  Fabrication of triangular nanobeam waveguide networks in bulk diamond using single-crystal silicon hard masks , 2014, 1411.3639.

[68]  Simon C. Benjamin,et al.  Freely Scalable Quantum Technologies using Cells of 5-to-50 Qubits with Very Lossy and Noisy Photonic Links , 2014, 1406.0880.

[69]  Yuncheng Song,et al.  Waveguide-integrated single-crystalline GaP resonators on diamond. , 2014, Optics express.

[70]  Raymond G. Beausoleil,et al.  Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond , 2009 .

[71]  A. Zaitsev,et al.  Optical properties of diamond , 2001 .

[72]  P Hemmer,et al.  Stark shift control of single optical centers in diamond. , 2006, Physical Review Letters.

[73]  D. Hunger,et al.  Laser micro-fabrication of concave, low-roughness features in silica , 2011, 1109.5047.

[74]  M. Markham,et al.  High-fidelity transfer and storage of photon states in a single nuclear spin , 2015, Nature Photonics.

[75]  C. Degen,et al.  Single-crystal diamond nanomechanical resonators with quality factors exceeding one million , 2012, Nature Communications.

[76]  M. Markham,et al.  Ultrafast all-optical coherent control of single silicon vacancy colour centres in diamond , 2016, Nature Communications.

[77]  Dirk Englund,et al.  Three megahertz photon collection rate from an NV center with millisecond spin coherence , 2014, 1409.3068.

[78]  Jeremy L O'Brien,et al.  Solid Immersion Facilitates Fluorescence Microscopy with Nanometer Resolution and Sub-Ångström Emitter Localization , 2012, Advanced materials.

[79]  Tilo Steinmetz,et al.  A fiber Fabry–Perot cavity with high finesse , 2010, 1005.0067.

[80]  Neil B. Manson,et al.  The nitrogen-vacancy colour centre in diamond , 2013, 1302.3288.

[81]  D. Awschalom,et al.  Engineered micro- and nanoscale diamonds as mobile probes for high-resolution sensing in fluid. , 2014, Nano letters.

[82]  J. Wrachtrup,et al.  Photochromism in single nitrogen-vacancy defect in diamond , 2005, cond-mat/0508323.

[83]  S. Zhang,et al.  Dynamic Jahn-Teller effect in the NV(-) center in diamond. , 2011, Physical review letters.

[84]  R. Warburton,et al.  Fabrication of mirror templates in silica with micron-sized radii of curvature , 2016, 1608.04527.

[85]  D. Englund,et al.  Nanoscale Engineering of Closely-Spaced Electronic Spins in Diamond. , 2016, Nano letters.

[86]  Dirk Englund,et al.  Quantum nanophotonics in diamond [Invited] , 2016 .

[87]  J. Rarity,et al.  Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses , 2010, 1006.2093.

[88]  F. Jelezko,et al.  Increasing the creation yield of shallow single defects in diamond by surface plasma treatment , 2013 .

[89]  M. D. Lukin,et al.  Nanoscale magnetic imaging of a single electron spin under ambient conditions , 2012, Nature Physics.

[90]  J. Wrachtrup,et al.  Scanning confocal optical microscopy and magnetic resonance on single defect centers , 1997 .

[91]  Dan E. Browne,et al.  Brokered graph-state quantum computation , 2005, quant-ph/0509209.

[92]  C. Santori,et al.  Conversion of neutral nitrogen-vacancy centers to negatively charged nitrogen-vacancy centers through selective oxidation , 2010, 1001.5449.

[93]  J. Petta,et al.  Highly tunable formation of nitrogen-vacancy centers via ion implantation , 2014, 1407.1434.

[94]  M. Markham,et al.  Heralded entanglement between solid-state qubits separated by three metres , 2012, Nature.

[95]  Hoi Wai Choi,et al.  Fabrication of natural diamond microlenses by plasma etching , 2005 .

[96]  Jan Meijer,et al.  Charge state manipulation of qubits in diamond , 2012, Nature Communications.

[97]  Christoph Becher,et al.  Photophysics of single silicon vacancy centers in diamond: implications for single photon emission. , 2012, Optics express.

[98]  Erdan Gu,et al.  Fabrication and characterization of diamond micro-optics , 2006 .

[99]  C. L. Lee,et al.  Micro-cylindrical and micro-ring lenses in CVD diamond , 2007 .

[100]  Three-dimensional localization of spins in diamond using 12C implantation , 2014, 1405.7352.

[101]  K. Vahala Optical microcavities , 2003, Nature.

[102]  Patterned Formation of Highly Coherent Nitrogen-Vacancy Centers Using a Focused Electron Irradiation Technique. , 2015, Nano letters.

[103]  T. R. Anthony,et al.  ELECTRON-PARAMAGNETIC-RESONANCE MEASUREMENTS ON THE DIVACANCY DEFECT CENTER R4/W6 IN DIAMOND , 1999 .

[104]  D. Englund,et al.  Invited Article: Precision nanoimplantation of nitrogen vacancy centers into diamond photonic crystal cavities and waveguides , 2016 .

[105]  M. D. Lukin,et al.  Optical magnetic imaging of living cells , 2013, Nature.

[106]  F. Jelezko,et al.  Observation of coherent oscillations in a single electron spin. , 2004, Physical review letters.

[107]  Fedor Jelezko,et al.  Nanoscale engineering and optical addressing of single spins in diamond. , 2010, Small.

[108]  H. Fedder,et al.  On the efficiency of combined ion implantation for the creation of near‐surface nitrogen‐vacancy centers in diamond , 2016 .

[109]  Dhiren M. Kara,et al.  Observing bulk diamond spin coherence in high-purity nanodiamonds , 2014, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[110]  Generation of ensembles of individually resolvable nitrogen vacancies using nanometer-scale apertures in ultrahigh-aspect ratio planar implantation masks. , 2014, Nano letters.

[111]  Martin Fischer,et al.  Low-temperature investigations of single silicon vacancy colour centres in diamond , 2012, 1210.3201.

[112]  J. Meijer,et al.  Room-temperature coherent coupling of single spins in diamond , 2006, quant-ph/0605038.

[113]  Neil B. Manson,et al.  Electron–phonon processes of the silicon-vacancy centre in diamond , 2014, 1411.2871.

[114]  F. Reinhard,et al.  Nanoengineered diamond waveguide as a robust bright platform for nanomagnetometry using shallow nitrogen vacancy centers. , 2014, Nano letters.

[115]  Fedor Jelezko,et al.  Dynamical Decoupling of a single electron spin at room temperature , 2010, 1008.1953.

[116]  C. Trautmann,et al.  Room-temperature entanglement between single defect spins in diamond , 2012, 1212.2804.

[117]  Oliver Benson,et al.  On-demand positioning of a preselected quantum emitter on a fiber-coupled toroidal microresonator , 2009 .

[118]  P. Barclay,et al.  High-Q/V Monolithic Diamond Microdisks Fabricated with Quasi-isotropic Etching. , 2015, Nano letters.

[119]  R Hanson,et al.  Universal control and error correction in multi-qubit spin registers in diamond. , 2013, Nature nanotechnology.

[120]  M. Markham,et al.  Quantum interference of single photons from remote nitrogen-vacancy centers in diamond. , 2011, Physical review letters.

[121]  Charles Santori,et al.  Hybrid photonic crystal cavity and waveguide for coupling to diamond NV-centers. , 2009, Optics express.

[122]  Jason M. Smith,et al.  Controlling the emission from semiconductor quantum dots using ultra-small tunable optical microcavities , 2012, 1206.6046.

[123]  Patrick Maletinsky,et al.  Integrated diamond networks for quantum nanophotonics. , 2011, Nano letters.

[124]  Patrik Rath,et al.  Diamond as a material for monolithically integrated optical and optomechanical devices , 2015 .

[125]  H. Weinfurter,et al.  Single photon emission from SiV centres in diamond produced by ion implantation , 2006 .

[126]  P. Senellart,et al.  Cavity-funneled generation of indistinguishable single photons from strongly dissipative quantum emitters. , 2015, Physical review letters.

[127]  M. Markham,et al.  Coherent optical transitions in implanted nitrogen vacancy centers. , 2014, Nano letters.

[128]  Jan Meijer,et al.  Creation of colour centres in diamond by collimated ion‐implantation through nano‐channels in mica , 2011 .

[129]  D. Cory,et al.  Robust decoupling techniques to extend quantum coherence in diamond. , 2010, Physical review letters.

[130]  Marko Lonvcar,et al.  Single-color centers implanted in diamond nanostructures , 2010, 1009.4224.

[131]  Large-scale GaP-on-diamond integrated photonics platform for NV center-based quantum information , 2015, 1510.05047.

[132]  M. Lončar,et al.  Design and focused ion beam fabrication of single crystal diamond nanobeam cavities , 2010, 1008.1431.

[133]  Y. Lim,et al.  Repeat-until-success linear optics distributed quantum computing. , 2005, Physical review letters.

[134]  M. Doherty,et al.  Electronic structure of the negatively charged silicon-vacancy center in diamond , 2013, 1310.3131.

[135]  D Budker,et al.  Solid-state electronic spin coherence time approaching one second , 2012, Nature Communications.

[136]  L. Childress,et al.  Supporting Online Material for , 2006 .

[137]  M. Rayson,et al.  Calculated electron affinity and stability of halogen-terminated diamond , 2011 .

[138]  J. Cirac,et al.  Room-Temperature Quantum Bit Memory Exceeding One Second , 2012, Science.

[139]  Hyatt M. Gibbs,et al.  Scanning a photonic crystal slab nanocavity by condensation of xenon , 2005 .

[140]  A. Trichet,et al.  Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond , 2015, 1506.05161.

[141]  S. Gsell,et al.  Deterministic coupling of a single silicon-vacancy color center to a photonic crystal cavity in diamond. , 2014, Nano letters.

[142]  J. Ziegler,et al.  SRIM – The stopping and range of ions in matter (2010) , 2010 .

[143]  C. L. Lee,et al.  Etching and micro-optics fabrication in diamond using chlorine-based inductively-coupled plasma , 2008 .

[144]  S. Spillane,et al.  Nanophotonics for quantum optics using nitrogen-vacancy centers in diamond , 2010, Nanotechnology.

[145]  Patrik Rath,et al.  Scalable Fabrication of Integrated Nanophotonic Circuits on Arrays of Thin Single Crystal Diamond Membrane Windows. , 2016, Nano letters.

[146]  Jan Meijer,et al.  High-fidelity spin entanglement using optimal control , 2013, Nature Communications.

[147]  Noel H. Wan,et al.  Efficient photon coupling from a diamond nitrogen vacancy center by integration with silica fiber , 2015, Light: Science & Applications.

[148]  François Ladouceur,et al.  Diamond waveguides fabricated by reactive ion etching. , 2008, Optics express.

[149]  Neil B. Manson,et al.  Perfect alignment and preferential orientation of nitrogen-vacancy centers during chemical vapor deposition diamond growth on (111) surfaces , 2014, 1401.4106.

[150]  J Wrachtrup,et al.  Optically controlled switching of the charge state of a single nitrogen-vacancy center in diamond at cryogenic temperatures. , 2013, Physical review letters.

[151]  Christian Hepp,et al.  Electronic structure of the silicon vacancy color center in diamond. , 2013, Physical review letters.

[152]  M. S. Skolnick,et al.  Two-Dimensional Metal–Chalcogenide Films in Tunable Optical Microcavities , 2014, Nano letters.

[153]  R Hanson,et al.  Universal Dynamical Decoupling of a Single Solid-State Spin from a Spin Bath , 2010, Science.

[154]  Yuri N. Palyanov,et al.  High quality thick CVD diamond films homoepitaxially grown on (111)-oriented substrates , 2014 .

[155]  Dirk Englund,et al.  Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity. , 2010, Nano letters.

[156]  M. Markham,et al.  Coupling of NV centers to photonic crystal nanobeams in diamond. , 2013, Nano letters.

[157]  J. Achard,et al.  Engineered arrays of nitrogen-vacancy color centers in diamond based on implantation of CN− molecules through nanoapertures , 2010, 1008.1483.

[158]  R. Warburton,et al.  A small mode volume tunable microcavity: Development and characterization , 2014, 1408.1357.

[159]  P Cappellaro,et al.  Suppression of spin-bath dynamics for improved coherence of multi-spin-qubit systems , 2012, Nature Communications.

[160]  D. Matsukevich,et al.  Entanglement of single-atom quantum bits at a distance , 2007, Nature.

[161]  P. Barclay,et al.  Observation of the dynamic Jahn-Teller effect in the excited states of nitrogen-vacancy centers in diamond. , 2009, Physical review letters.

[162]  Zhi-Ming Zhang,et al.  Entangling distant atoms by interference of polarized photons. , 2003, Physical review letters.

[163]  C. Becher,et al.  Photoluminescence excitation and spectral hole burning spectroscopy of silicon vacancy centers in diamond , 2016, 1603.04295.

[164]  Christoph Pauly,et al.  One- and two-dimensional photonic crystal microcavities in single crystal diamond. , 2011, Nature nanotechnology.

[165]  Jason M. Smith,et al.  Prospects for measurement‐based quantum computing with solid state spins , 2009, 0901.3092.

[166]  Dirk Englund,et al.  Coherent spin control of a nanocavity-enhanced qubit in diamond , 2014, Nature Communications.

[167]  Edward H. Chen,et al.  Scalable fabrication of high purity diamond nanocrystals with long-spin-coherence nitrogen vacancy centers. , 2014, Nano letters.

[168]  Fedor Jelezko,et al.  Increasing the coherence time of single electron spins in diamond by high temperature annealing , 2010 .

[169]  C. Santori,et al.  Coupling of nitrogen-vacancy centers in diamond to a GaP waveguide , 2008, 0811.0328.

[170]  Glenn S. Solomon,et al.  Coupling an epitaxial quantum dot to a fiber-based external-mirror microcavity , 2009, 0910.4658.

[171]  M. Konuma,et al.  Effect of low-damage inductively coupled plasma on shallow nitrogen-vacancy centers in diamond , 2015, 1507.00890.

[172]  E. Hu,et al.  Increased negatively charged nitrogen-vacancy centers in fluorinated diamond , 2013 .

[173]  Michal Lipson,et al.  Scalable Integration of Long-Lived Quantum Memories into a Photonic Circuit , 2014, Physical Review X.

[174]  Wooyoung Hong,et al.  High quality-factor optical nanocavities in bulk single-crystal diamond , 2014, Nature Communications.

[175]  Karsten Frenner,et al.  Fabrication of Solid-Immersion-Lenses by focussed ion beam milling , 2014 .

[176]  J. L. O'Brien,et al.  Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon , 2007, 0708.2019.

[177]  P. Deotare,et al.  Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide , 2010, 1002.1319.

[178]  L. Jiang,et al.  Quantum entanglement between an optical photon and a solid-state spin qubit , 2010, Nature.

[179]  Christian Hepp,et al.  Optical signatures of silicon-vacancy spins in diamond. , 2014, Nature communications.

[180]  L. Jiang,et al.  Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond , 2007, Science.

[181]  D. Twitchen,et al.  Optical properties of the neutral silicon split-vacancy center in diamond , 2011 .

[182]  Lee C. Bassett,et al.  Engineering shallow spins in diamond with nitrogen delta-doping , 2012 .

[183]  P. Hemmer,et al.  A diamond nanowire single-photon source. , 2009, Nature nanotechnology.

[184]  Marko Loncar,et al.  Diamond nonlinear photonics , 2014, Nature Photonics.

[185]  Joseph Salzman,et al.  Ultra high-Q photonic crystal nanocavity design: the effect of a low-epsilon slab material. , 2008, Optics express.

[186]  M. A. Rol,et al.  Repeated quantum error correction on a continuously encoded qubit by real-time feedback , 2015, Nature Communications.

[187]  Aroosa Ijaz,et al.  Optical and microwave control of germanium-vacancy center spins in diamond , 2016, 1612.02947.

[188]  Christian Hepp,et al.  All-optical formation of coherent dark states of silicon-vacancy spins in diamond. , 2014, Physical review letters.

[189]  Philip Hemmer,et al.  All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond. , 2014, Physical review letters.

[190]  J R Maze,et al.  Single-shot readout of multiple nuclear spin qubits in diamond under ambient conditions. , 2012, Physical review letters.

[191]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[192]  F. Jelezko,et al.  Multiple intrinsically identical single-photon emitters in the solid state , 2013, Nature Communications.

[193]  Triangular nanobeam photonic cavities in single-crystal diamond , 2011, 1101.1367.

[194]  John G. Rarity,et al.  Laser writing of coherent colour centres in diamond , 2016, Nature Photonics.

[195]  S. Shikata,et al.  Negatively charged nitrogen-vacancy centers in a 5 nm thin 12C diamond film. , 2013, Nano letters.

[196]  D. Budker,et al.  Electron spin resonance shift and linewidth broadening of nitrogen-vacancy centers in diamond as a function of electron irradiation dose. , 2009, Applied physics letters.

[197]  Harald Giessen,et al.  Diamond nanophotonics , 2012, Beilstein journal of nanotechnology.

[198]  Paul E. Barclay,et al.  Single crystal diamond nanobeam waveguide optomechanics , 2015, 1502.01788.

[199]  B. Hensen,et al.  Design and low-temperature characterization of a tunable microcavity for diamond-based quantum networks , 2016, 1612.02164.

[200]  D. Awschalom,et al.  Suppressing Spectral Diffusion of Emitted Photons with Optical Pulses. , 2015, Physical review letters.

[201]  Dirk Englund,et al.  Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. , 2014, Nano letters.

[202]  David O. Bracher,et al.  Deterministic coupling of delta-doped NV centers to a nanobeam photonic crystal cavity , 2014, 1411.0725.

[203]  P. Barclay,et al.  Low-temperature tapered-fiber probing of diamond nitrogen-vacancy ensembles coupled to GaP microcavities , 2011, 1102.5372.

[204]  D. Hunger,et al.  Photothermal effects in ultra-precisely stabilized tunable microcavities. , 2016, Optics express.

[205]  K. Vahala Optical microcavities : Photonic technologies , 2003 .

[206]  I. Walmsley,et al.  Creating diamond color centers for quantum optical applications , 2007, 0710.5379.

[207]  M. Markham,et al.  Optical properties of single crystal diamond microfilms fabricated by ion implantation and lift-off processing , 2012 .

[208]  Processing of photonic crystal nanocavity for quantum information in diamond , 2010, 1012.5878.

[209]  M. Lukin,et al.  Free-standing mechanical and photonic nanostructures in single-crystal diamond. , 2012, Nano letters.

[210]  C. Degen,et al.  Facile Fabrication of Single‐Crystal‐Diamond Nanostructures with Ultrahigh Aspect Ratio , 2013, Advanced materials.

[211]  Igor Aharonovich,et al.  Homoepitaxial Growth of Single Crystal Diamond Membranes for Quantum Information Processing , 2011, Advanced materials.

[212]  Hannes Bernien,et al.  Two-photon quantum interference from separate nitrogen vacancy centers in diamond. , 2011, Physical review letters.

[213]  F. Jelezko,et al.  Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. , 2004, Physical review letters.

[214]  M. Steel,et al.  Diamond based photonic crystal microcavities. , 2006, Optics express.

[215]  T. Ohshima,et al.  Array of bright silicon-vacancy centers in diamond fabricated by low-energy focused ion beam implantation , 2014 .

[216]  Richard P. Mildren,et al.  Optical Engineering of Diamond , 2013 .

[217]  Christian Kurtsiefer,et al.  Stable Solid-State Source of Single Photons , 2000 .

[218]  D. Clarke,et al.  Fabrication of thin, luminescent, single-crystal diamond membranes , 2011, 1108.0738.

[219]  Piernicola Spinicelli,et al.  Maskless and targeted creation of arrays of colour centres in diamond using focused ion beam technology , 2013 .

[220]  M. Markham,et al.  Ultralong spin coherence time in isotopically engineered diamond. , 2009, Nature materials.

[221]  J. Rarity,et al.  Nanofabricated solid immersion lenses registered to single emitters in diamond , 2010, 1012.1135.

[222]  Norbert Kalb,et al.  Robust quantum-network memory using decoherence-protected subspaces of nuclear spins , 2016, 1603.01602.

[223]  Bangshan Sun,et al.  High conductivity micro-wires in diamond following arbitrary paths , 2014 .

[224]  C. Becher,et al.  Coupling of a single N-V center in diamond to a fiber-based microcavity , 2013, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[225]  Patrick Maletinsky,et al.  Fabrication of all diamond scanning probes for nanoscale magnetometry. , 2016, The Review of scientific instruments.

[226]  Martin Fischer,et al.  Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium , 2010, 1008.4736.

[227]  Christoph Becher,et al.  Cavity-Enhanced Single-Photon Source Based on the Silicon-Vacancy Center in Diamond , 2016, 1612.05509.

[228]  M. Markham,et al.  Integrated high-quality factor optical resonators in diamond. , 2013, Nano letters.

[229]  Young-Shin Park,et al.  Cavity QED with diamond nanocrystals and silica microspheres. , 2006, Nano letters.

[230]  A Faraon,et al.  Dynamic stabilization of the optical resonances of single nitrogen-vacancy centers in diamond. , 2011, Physical review letters.

[231]  Andrei Faraon,et al.  Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond. , 2012, Physical review letters.

[232]  Thomas Schenkel,et al.  Chip-scale nanofabrication of single spins and spin arrays in diamond. , 2010, Nano letters.

[233]  J. Tetienne,et al.  Magnetometry with nitrogen-vacancy defects in diamond , 2013, Reports on progress in physics. Physical Society.

[234]  M. F. Hamer,et al.  Optical studies of the 1.945 eV vibronic band in diamond , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[235]  Kitano,et al.  Comment on "Observation of Berry's topological phase by use of an optical fiber" , 1987, Physical review letters.

[236]  S. Wehner,et al.  Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres , 2015, Nature.

[237]  M. Lukin,et al.  A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. , 2011, Nature nanotechnology.

[238]  R. N. Schouten,et al.  Unconditional quantum teleportation between distant solid-state quantum bits , 2014, Science.

[239]  C. Santori,et al.  Low-temperature tapered-ber probing of diamond NV ensembles coupled to GaP microcavities , 2011 .

[240]  B. Hensen,et al.  High-fidelity projective read-out of a solid-state spin quantum register , 2011, Nature.

[241]  Stable fiber-based Fabry-Pérot cavity , 2006, physics/0606231.

[242]  Brant C. Gibson,et al.  Ion‐Beam‐Assisted Lift‐Off Technique for Three‐Dimensional Micromachining of Freestanding Single‐Crystal Diamond , 2005 .

[243]  Fariba Hatami,et al.  Efficient extraction of zero-phonon-line photons from single nitrogen-vacancy centers in an integrated GaP-on-diamond platform , 2016, 1606.01826.

[244]  Alexander Zaitsev,et al.  Creation and nature of optical centres in diamond for single-photon emission—overview and critical remarks , 2011 .

[245]  M. Markham,et al.  Engineering of nitrogen-vacancy color centers in high purity diamond by ion implantation and annealing , 2011 .

[246]  James E. Butler,et al.  Reactive ion etching of waveguide structures in diamond , 2008 .