Uniform limit theorems for non-singular renewal and Markov renewal processes

We show that if the increment distribution of a renewal process has some convolution non-singular with respect to Lebesgue measure, then the skeletons of the forward recurrence time process are φ-irreducible positive recurrent Markov chains. Known convergence properties of such chains give simple proofs of uniform versions of some old and new key renewal theorems; these show in particular that non-singularity assumptions on the increment and initial distributions enable the assumption of direct Riemann integrability to be dropped from the standard key renewal theorem. An application to Markov renewal processes is given.

[1]  Esa Nummelin,et al.  Semi-Markov processes on a general state space: α-theory and quasi-stationarity , 1980, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[2]  D. McDonald,et al.  On semi-Markov and semi-regenerative processes I , 1978 .

[3]  E. Nummelin Uniform and ratio limit theorems for Markov renewal and semi-regenerative processes on a general state space , 1978 .

[4]  R. Tweedie Hitting times of Markov chains, with application to state-dependent queues , 1977, Bulletin of the Australian Mathematical Society.

[5]  Richard L. Tweedie,et al.  Modes of convergence of Markov chain transition probabilities , 1977 .

[6]  R. Tweedie Criteria for classifying general Markov chains , 1976, Advances in Applied Probability.

[7]  R. Cogburn A Uniform Theory for Sums of Markov Chain Transition Probabilities , 1975 .

[8]  R. Tweedie $R$-Theory for Markov Chains on a General State Space I: Solidarity Properties and $R$-Recurrent Chains , 1974 .

[9]  J. Pitman Uniform rates of convergence for Markov chain transition probabilities , 1974 .

[10]  Harry Kesten,et al.  Renewal Theory for Functionals of a Markov Chain with General State Space , 1974 .

[11]  Erhan Çinlar,et al.  Periodicity in Markov renewal theory , 1974, Advances in Applied Probability.

[12]  Douglas R. Miller Existence of Limits in Regenerative Processes , 1972 .

[13]  D. Vere-Jones Markov Chains , 1972, Nature.

[14]  M. Schäl Über Lösungen einer Erneuerungsgleichung , 1971 .

[15]  S. Orey Lecture Notes on Limit Theorems for Markov Chain Transition Probabilities , 1971 .

[16]  J. Jacod,et al.  Théorème de renouvellement et classification pour les chaînes semi-markoviennes , 1971 .

[17]  M. Schäl Rates of convergence in markov renewal processes with auxiliary paths , 1970 .

[18]  C. J. Stone,et al.  On Absolutely Continuous Components and Renewal Theory , 1966 .

[19]  W. L. Smith Remarks on the paper ‘Regenerative stochastic processes’ , 1960, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[20]  Walter L. Smith,et al.  Regenerative stochastic processes , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[21]  S. Karlin On the renewal equation. , 1955 .

[22]  W. Feller An Introduction to Probability Theory and Its Applications , 1959 .