Dielectric resonator nanoantennas at visible frequencies.

Drawing inspiration from radio-frequency technologies, we propose a realization of nano-scale optical dielectric resonator antennas (DRAs) functioning in their fundamental mode. These DRAs operate via displacement current in a low-loss high-permittivity dielectric, resulting in reduced energy dissipation in the resonators. The designed nonuniform planar DRA array on a metallic plane imparts a sequence of phase shifts across the wavefront to create beam deflection off the direction of specular reflection. The realized array clearly demonstrates beam deflection at 633 nm. Despite the loss introduced by field interaction with the metal substrate, the proposed low-loss resonator concept is a first step towards nanoantennas with enhanced efficiency. The compact planar structure and technologically relevant materials promise monolithic circuit integration of DRAs.

[1]  Mark L. Brongersma,et al.  Plasmonics: Engineering optical nanoantennas , 2008 .

[2]  P. Ginzburg,et al.  Nano-plasmonic antennas in the near infrared regime , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[3]  Harald Giessen,et al.  3D optical Yagi–Uda nanoantenna array , 2011, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[4]  Erich N. Grossman,et al.  Lithographic spiral antennas at short wavelengths , 1991 .

[5]  M. Stockman Nanoplasmonics: past, present, and glimpse into future. , 2011, Optics express.

[6]  Zongfu Yu,et al.  Large Single-Molecule Fluorescence Enhancements Produced by a Bowtie Nanoantenna , 2009 .

[7]  Nader Engheta,et al.  Hertzian plasmonic nanodimer as an efficient optical nanoantenna , 2008 .

[8]  Aldo Petosa,et al.  Dielectric Resonator Antennas: A Historical Review and the Current State of the Art , 2010, IEEE Antennas and Propagation Magazine.

[9]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[10]  Alessandro Salandrino,et al.  Optical spectrometer at the nanoscale using optical Yagi-Uda nanoantennas , 2009 .

[11]  N. Halas,et al.  Nano-optics from sensing to waveguiding , 2007 .

[12]  Ingrid Wilke,et al.  Integrated nanostrip dipole antennas for coherent 30 THz infrared radiation , 1994 .

[13]  H. Giessen,et al.  3-D Optical Yagi-uda Nanoantenna Array , 2010 .

[14]  C. Fumeaux,et al.  Lithographic antennas at visible frequencies. , 1999, Optics letters.

[15]  O. Martin,et al.  Resonant Optical Antennas , 2005, Science.

[16]  Xiang Zhang,et al.  Compact magnetic antennas for directional excitation of surface plasmons. , 2012, Nano letters.

[17]  Lukas Novotny,et al.  Optical frequency mixing at coupled gold nanoparticles. , 2007, Physical review letters.

[18]  L. Novotný,et al.  Antennas for light , 2011 .

[19]  Stuart A. Long,et al.  The resonant cylindrical dielectric cavity antenna , 1983 .

[20]  A. Kildishev,et al.  Broadband Light Bending with Plasmonic Nanoantennas , 2012, Science.

[21]  Glenn P. Goodrich,et al.  Plasmonic enhancement of molecular fluorescence. , 2007, Nano letters.

[22]  Javier Alda,et al.  Planar infrared binary phase reflectarray. , 2008, Optics letters.

[23]  H. Rothuizen,et al.  Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation , 1998 .

[24]  Suntak Park,et al.  Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings. , 2003, Optics letters.

[25]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[26]  R. Vahldieck,et al.  Comparison of the Radiation Efficiency for the Dielectric Resonator Antenna and the Microstrip Antenna at Ka Band , 2008, IEEE Transactions on Antennas and Propagation.

[27]  Y. Kadoya,et al.  Directional control of light by a nano-optical Yagi–Uda antenna , 2009, 0910.2291.