Synergy between combinatorial chemistry and de novo design.

[1]  Philip M. Dean,et al.  Evaluation of a method for controlling molecular scaffold diversity in de novo ligand design , 1997, J. Comput. Aided Mol. Des..

[2]  Richard A. Lewis Automated site-directed drug design: Approaches to the formation of 3D molecular graphs , 1990, J. Comput. Aided Mol. Des..

[3]  Pieter F. W. Stouten,et al.  A molecular mechanics/grid method for evaluation of ligand–receptor interactions , 1995, J. Comput. Chem..

[4]  Andrew R. Leach,et al.  Automated conformational analysis and structure generation: algorithms for molecular perception , 1990, J. Chem. Inf. Comput. Sci..

[5]  M Karplus,et al.  HOOK: A program for finding novel molecular architectures that satisfy the chemical and steric requirements of a macromolecule binding site , 1994, Proteins.

[6]  M. Bilodeau,et al.  SOLID-SUPPORTED SYNTHESIS OF IMIDAZOLES : A STRATEGY FOR DIRECT RESIN-ATTACHMENT TO THE IMIDAZOLE CORE , 1998 .

[7]  Richard A. Lewis,et al.  Automated site-directed drug design: the concept of spacer skeletons for primary structure generation , 1989, Proceedings of the Royal Society of London. B. Biological Sciences.

[8]  Keith Prout,et al.  Automated conformational analysis: Algorithms for the efficient construction of low-energy conformations , 1990, J. Comput. Aided Mol. Des..

[9]  N R Taylor,et al.  Dihydropyrancarboxamides related to zanamivir: a new series of inhibitors of influenza virus sialidases. 2. Crystallographic and molecular modeling study of complexes of 4-amino-4H-pyran-6-carboxamides and sialidase from influenza virus types A and B. , 1998, Journal of medicinal chemistry.

[10]  P. Hajduk,et al.  Discovering High-Affinity Ligands for Proteins , 1997, Science.

[11]  I. Kuntz,et al.  Automated docking with grid‐based energy evaluation , 1992 .

[12]  Hans-Joachim Böhm,et al.  LUDI: rule-based automatic design of new substituents for enzyme inhibitor leads , 1992, J. Comput. Aided Mol. Des..

[13]  Gareth Jones,et al.  Further Development of a Genetic Algorithm for Ligand Docking and Its Application to Screening Combinatorial Libraries , 1999 .

[14]  J M Blaney,et al.  A geometric approach to macromolecule-ligand interactions. , 1982, Journal of molecular biology.

[15]  David E. Clark,et al.  PRO_SELECT: Combining structure-based drug design and combinatorial chemistry for rapid lead discovery. 1. Technology , 1997, J. Comput. Aided Mol. Des..

[16]  Andrew R. Leach Automated conformational analysis and structure generation , 1991 .

[17]  John Bradshaw,et al.  The Effectiveness of Reactant Pools for Generating Structurally-Diverse Combinatorial Libraries , 1997, J. Chem. Inf. Comput. Sci..

[18]  Valerie J. Gillet,et al.  SPROUT: Recent developments in the de novo design of molecules , 1994, J. Chem. Inf. Comput. Sci..

[19]  Ajay,et al.  Recognizing molecules with drug-like properties. , 1999, Current opinion in chemical biology.

[20]  Barry A. Bunin,et al.  The combinatorial synthesis and chemical and biological evaluation of a 1,4-benzodiazepine library. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[21]  P. Hajduk,et al.  Discovering High-Affinity Ligands for Proteins: SAR by NMR , 1996, Science.

[22]  M. T. Barakat,et al.  The atom assignment problem in automated de novo drug design. 1. Transferability of molecular fragment properties , 1995, J. Comput. Aided Mol. Des..

[23]  Andrew R. Leach,et al.  Automated molecular design: A new fragment-joining algorithm , 1994, J. Comput. Aided Mol. Des..

[24]  C. Levinthal,et al.  Predicting antibody hypervariable loop conformation. I. Ensembles of random conformations for ringlike structures , 1987, Biopolymers.

[25]  M. T. Barakat,et al.  The atom assignment problem in automated de novo drug design. 3. Algorithms for optimization of fragment placement onto 3D molecular graphs , 1995, J. Comput. Aided Mol. Des..

[26]  A R Leach Structure-based selection of building blocks for array synthesis via the World-Wide Web. , 1997, Journal of molecular graphics & modelling.

[27]  Karen N. Allen,et al.  An Experimental Approach to Mapping the Binding Surfaces of Crystalline Proteins , 1996 .

[28]  Jonas Boström,et al.  Conformational energy penalties of protein-bound ligands , 1998, J. Comput. Aided Mol. Des..

[29]  M. T. Barakat,et al.  The atom assignment problem in automated de novo drug design. 4. Tests for site-directed fragment placement based on molecular complementarity , 1995, J. Comput. Aided Mol. Des..

[30]  Conrad C. Huang,et al.  Automated site-directed drug design using molecular lattices , 1992 .

[31]  Ajay,et al.  Computational methods to predict binding free energy in ligand-receptor complexes. , 1995, Journal of medicinal chemistry.

[32]  Andrew R. Leach,et al.  An investigation into the construction of molecular models by the template joining method , 1988, J. Comput. Aided Mol. Des..

[33]  Darren V. S. Green,et al.  Implementation of a System for Reagent Selection and Library Enumeration, Profiling, and Design , 1999, J. Chem. Inf. Comput. Sci..

[34]  Paul A. Bartlett,et al.  CAVEAT: A program to facilitate the design of organic molecules , 1994, J. Comput. Aided Mol. Des..

[35]  S. L. Chan,et al.  Ligand atom partial charges assignment for complementary electrostatic potentials , 1992, J. Comput. Aided Mol. Des..

[36]  Todd J. A. Ewing,et al.  DREAM++: Flexible docking program for virtual combinatorial libraries , 1999, J. Comput. Aided Mol. Des..

[37]  R Green,et al.  Chemoinformatics--a new name for an old problem? , 1999, Current opinion in chemical biology.

[38]  Paul W Smith,et al.  Novel inhibitors of influenza sialidases related to GG167 structure-activity, crystallographic and Molecular dynamics studies with 4H-pyran-2-carboxylic acid 6-carboxamides , 1996 .

[39]  Richard A. Lewis,et al.  Automated site-directed drug design : the formation of molecular templates in primary structure generation , 1989, Proceedings of the Royal Society of London. B. Biological Sciences.

[40]  R A Lewis,et al.  Automated site-directed drug design: a method for the generation of general three-dimensional molecular graphs. , 1992, Journal of molecular graphics.

[41]  Andrew R. Leach,et al.  Current methods for site-directed structure generation , 1994, J. Comput. Aided Mol. Des..

[42]  P. Goodford A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. , 1985, Journal of medicinal chemistry.

[43]  M. T. Barakat,et al.  The atom assignment problem in automated de novo drug design. 2. A method for molecular graph and fragment perception , 1995, J. Comput. Aided Mol. Des..

[44]  Philip M. Dean,et al.  A branch-and-bound method for optimal atom-type assignment in de novo ligand design , 1998, J. Comput. Aided Mol. Des..

[45]  J. Bolin,et al.  Crystal structures of Escherichia coli and Lactobacillus casei dihydrofolate reductase refined at 1.7 A resolution. I. General features and binding of methotrexate. , 1982, The Journal of biological chemistry.

[46]  M. T. Barakat,et al.  The atom assignment problem in automated de novo drug design. 5. Tests for envelope-directed fragment placement based on molecular similarity , 1995, J. Comput. Aided Mol. Des..

[47]  Andrew R. Leach,et al.  A ring‐bracing approach to computer‐assisted ligand design , 1994, J. Comput. Chem..

[48]  Tad Hurst,et al.  Flexible 3D searching: The directed tweak technique , 1994, J. Chem. Inf. Comput. Sci..

[49]  I D Kuntz,et al.  CombiDOCK: Structure-based combinatorial docking and library design , 1998, Journal of computer-aided molecular design.

[50]  M. Karplus,et al.  Functionality maps of binding sites: A multiple copy simultaneous search method , 1991, Proteins.

[51]  Andrew R. Leach,et al.  Automated conformational analysis: Directed conformational search using the A* algorithm , 1990 .