Versatile multiplier architectures in GF(2k) fields using the Montgomery multiplication algorithm

Many sequential multipliers for polynomial basis GF(2^k) fields have been proposed using the LSbit and MSbit multiplication algorithm. However, all those designs are defined over fixed size GF(2^k) fields and sometimes over fixed special form irreducible polynomials (AOL, trinomials, pentanomials). When such architectures are redesigned for arbitrary GF(2^k) fields and generic irreducible polynomials, therefore made versatile, they result in high space complexity (gate-latch number), low frequency (high critical path) and high latency designs. In this paper a Montgomery multiplication element (MME) architecture specially designed for arbitrary GF(2^k) fields defined over general irreducible polynomials, is proposed, based on an optimized version of the Montgomery multiplication (MM) algorithm for GF(2^k) fields. To evaluate the proposed MME and prove the efficiency of the MM algorithm in versatile designing, three distinct versatile Montgomery multiplier architectures are presented using this proposed MME. They achieve small gate-latch number and high clock frequency compared to other sequential versatile designs.

[1]  Keshab K. Parhi,et al.  Low-Energy Digit-Serial/Parallel Finite Field Multipliers , 1998 .

[2]  Michael Rosing,et al.  Implementing elliptic curve cryptography , 1998 .

[3]  O. Koufopavlou,et al.  Montgomery modular multiplier architectures and hardware implementations for an RSA cryptosystem , 2003, 2003 46th Midwest Symposium on Circuits and Systems.

[4]  L. Washington Elliptic Curves: Number Theory and Cryptography , 2003 .

[5]  Guido Bertoni,et al.  Systolic and Scalable Architectures for Digit-Serial Multiplication in Fields GF(pm) , 2003, INDOCRYPT.

[6]  Ian F. Blake,et al.  Elliptic curves in cryptography , 1999 .

[7]  C.-L. Wang,et al.  Digit-serial systolic multiplier for finite fields GF(2m) , 1998 .

[8]  Keshab K. Parhi,et al.  Efficient semisystolic architectures for finite-field arithmetic , 1998, IEEE Trans. Very Large Scale Integr. Syst..

[9]  Jan M. Rabaey,et al.  Digital Integrated Circuits: A Design Perspective , 1995 .

[10]  Francisco Rodríguez-Henríquez,et al.  Parallel Multipliers Based on Special Irreducible Pentanomials , 2003, IEEE Trans. Computers.

[11]  Huapeng Wu Montgomery Multiplier and Squarer for a Class of Finite Fields , 2002, IEEE Trans. Computers.

[12]  Berk Sunar,et al.  A versatile Montgomery multiplier architecture with characteristic three support , 2009, Comput. Electr. Eng..

[13]  Alfred Menezes,et al.  Guide to Elliptic Curve Cryptography , 2004, Springer Professional Computing.

[14]  P. L. Montgomery Modular multiplication without trial division , 1985 .

[15]  Chiou-Yng Lee,et al.  Low-complexity bit-parallel systolic Montgomery multipliers for special classes of GF(2/sup m/) , 2005, IEEE Transactions on Computers.

[16]  M. A. Hasan,et al.  Efficient architectures for computations over variable dimensional Galois fields , 1998 .

[17]  Trieu-Kien Truong,et al.  Systolic Multipliers for Finite Fields GF(2m) , 1984, IEEE Transactions on Computers.

[18]  Chin-Liang Wang,et al.  Systolic array implementation of multipliers for finite fields GF(2/sup m/) , 1991 .

[19]  Sheng-Jyh Wang,et al.  Two systolic architectures for multiplication in GF(2m) , 2000 .

[20]  Berk Sunar,et al.  Mastrovito Multiplier for All Trinomials , 1999, IEEE Trans. Computers.

[21]  Alfred Menezes,et al.  Handbook of Applied Cryptography , 2018 .

[22]  George Theodoridis,et al.  An efficient reconfigurable multiplier architecture for Galois field GF(2m) , 2003, Microelectron. J..

[23]  Keshab K. Parhi,et al.  VLSI digital signal processing systems , 1999 .

[24]  A. Menezes,et al.  Applications of Finite Fields , 1992 .

[25]  ÇETIN K. KOÇ,et al.  Montgomery Multiplication in GF(2k) , 1998, Des. Codes Cryptogr..

[26]  Gerardo Orlando,et al.  Efficient Elliptic Curve Processor Architectures for Field Programmable Logic , 2002 .

[27]  Gunnar Gaubatz Versatile Montgomery Multiplier Architectures , 2002 .

[28]  Christof Paar,et al.  A super-serial Galois fields multiplier for FPGAs and its application to public-key algorithms , 1999, Seventh Annual IEEE Symposium on Field-Programmable Custom Computing Machines (Cat. No.PR00375).