Using Developer Information as a Factor for Fault Prediction

We have been investigating different prediction models to identify which files of a large multi-release industrial software system are most likely to contain the largest numbers of faults in the next release. To make predictions we considered a number of different file characteristics and change information about the files, and have built fully- automatable models that do not require that the user have any statistical expertise. We now consider the effect of adding developer information as a prediction factor and assess the extent to which this affects the quality of the predictions.

[1]  Audris Mockus,et al.  Does Code Decay? Assessing the Evidence from Change Management Data , 2001, IEEE Trans. Software Eng..

[2]  Daniel J. Paulish,et al.  An empirical investigation of software fault distribution , 1993, [1993] Proceedings First International Software Metrics Symposium.

[3]  Victor R. Basili,et al.  Software errors and complexity: an empirical investigation , 1993 .

[4]  Audris Mockus,et al.  Predicting risk of software changes , 2000, Bell Labs Technical Journal.

[5]  Elaine J. Weyuker,et al.  The distribution of faults in a large industrial software system , 2002, ISSTA '02.

[6]  Elliot Soloway,et al.  Where the bugs are , 1985, CHI '85.

[7]  Victor R. Basili,et al.  Software errors and complexity: an empirical investigation0 , 1984, CACM.

[8]  Harvey P. Siy,et al.  Predicting Fault Incidence Using Software Change History , 2000, IEEE Trans. Software Eng..

[9]  Norman E. Fenton,et al.  Quantitative Analysis of Faults and Failures in a Complex Software System , 2000, IEEE Trans. Software Eng..

[10]  Witold Pedrycz,et al.  Practical assessment of the models for identification of defect-prone classes in object-oriented commercial systems using design metrics , 2003, J. Syst. Softw..

[11]  Taghi M. Khoshgoftaar,et al.  Using regression trees to classify fault-prone software modules , 2002, IEEE Trans. Reliab..

[12]  Elaine J. Weyuker,et al.  Predicting the location and number of faults in large software systems , 2005, IEEE Transactions on Software Engineering.

[13]  Chris F. Kemerer,et al.  A Metrics Suite for Object Oriented Design , 2015, IEEE Trans. Software Eng..

[14]  Maurizio Pighin,et al.  An empirical analysis of fault persistence through software releases , 2003, 2003 International Symposium on Empirical Software Engineering, 2003. ISESE 2003. Proceedings..

[15]  Edward N. Adams,et al.  Optimizing Preventive Service of Software Products , 1984, IBM J. Res. Dev..

[16]  Giovanni Denaro,et al.  An empirical evaluation of fault-proneness models , 2002, ICSE '02.

[17]  Bojan Cukic,et al.  Robust prediction of fault-proneness by random forests , 2004, 15th International Symposium on Software Reliability Engineering.

[18]  Les Hatton,et al.  Reexamining the Fault Density-Component Size Connection , 1997, IEEE Softw..

[19]  Lionel C. Briand,et al.  Predicting fault-prone components in a java legacy system , 2006, ISESE '06.

[20]  Niclas Ohlsson,et al.  Predicting Fault-Prone Software Modules in Telephone Switches , 1996, IEEE Trans. Software Eng..

[21]  Elaine J. Weyuker,et al.  Looking for bugs in all the right places , 2006, ISSTA '06.

[22]  P. McCullagh,et al.  Generalized Linear Models , 1972, Predictive Analytics.

[23]  Taghi M. Khoshgoftaar,et al.  The Detection of Fault-Prone Programs , 1992, IEEE Trans. Software Eng..

[24]  Taghi M. Khoshgoftaar,et al.  Early Quality Prediction: A Case Study in Telecommunications , 1996, IEEE Softw..