A fast and effective image retrieval scheme using color-, texture-, and shape-based histograms

The rapid growth of digital image collections has prompted the need for development of software tools that facilitate efficient searching and retrieval of images from large image databases. Towards this goal, we propose a content-based image retrieval scheme for retrieval of images via their color, texture, and shape features. Using three specialized histograms (i.e. color, wavelet, and edge histograms), we show that a more accurate representation of the underlying distribution of the image features improves the retrieval quality. Furthermore, in an attempt to better represent the user’s information needs, our system provides an interactive search mechanism through the user interface. Users searching through the database can select the visual features and adjust the associated weights according to the aspects they wish to emphasize. The proposed histogram-based scheme has been thoroughly evaluated using two general-purpose image datasets consisting of 1000 and 3000 images, respectively. Experimental results show that this scheme not only improves the effectiveness of the CBIR system, but also improves the efficiency of the overall process.

[1]  C.-C. Jay Kuo,et al.  Color distribution analysis and quantization for image retrieval , 1996, Electronic Imaging.

[2]  Antonio Torralba,et al.  Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope , 2001, International Journal of Computer Vision.

[3]  James Ze Wang,et al.  Content-based image indexing and searching using Daubechies' wavelets , 1998, International Journal on Digital Libraries.

[4]  Mark J. Huiskes,et al.  The MIR flickr retrieval evaluation , 2008, MIR '08.

[5]  Ingemar J. Cox,et al.  The Bayesian image retrieval system, PicHunter: theory, implementation, and psychophysical experiments , 2000, IEEE Trans. Image Process..

[6]  Jitendra Malik,et al.  Blobworld: A System for Region-Based Image Indexing and Retrieval , 1999, VISUAL.

[7]  B. S. Manjunath,et al.  NeTra: A toolbox for navigating large image databases , 1997, Proceedings of International Conference on Image Processing.

[8]  Thomas Sikora,et al.  The MPEG-7 visual standard for content description-an overview , 2001, IEEE Trans. Circuits Syst. Video Technol..

[9]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[10]  Yimin Wu,et al.  A feature re-weighting approach for relevance feedback in image retrieval , 2002, Proceedings. International Conference on Image Processing.

[11]  Dah-Jye Lee,et al.  A Spine X-Ray Image Retrieval System Using Partial Shape Matching , 2008, IEEE Transactions on Information Technology in Biomedicine.

[12]  Shih-Fu Chang,et al.  Image Retrieval: Current Techniques, Promising Directions, and Open Issues , 1999, J. Vis. Commun. Image Represent..

[13]  Beng Chin Ooi,et al.  Fast image retrieval using color-spatial information , 1998, The VLDB Journal.

[14]  Nam Chul Kim,et al.  Content-Based Image Retrieval Using Multiresolution Color and Texture Features , 2008, IEEE Transactions on Multimedia.

[15]  Xuelong Li,et al.  Image retrieval based on perceptive weighted color blocks , 2003, Pattern Recognit. Lett..

[16]  Moncef Gabbouj,et al.  Dynamic feature weights with relevance feedback in content-based image retrieval , 2009, 2009 24th International Symposium on Computer and Information Sciences.

[17]  Ashish Mohan Yadav,et al.  A Survey on Content Based Image Retrieval Systems , 2014 .

[18]  Alex Pentland,et al.  Photobook: Content-based manipulation of image databases , 1996, International Journal of Computer Vision.

[19]  Chang-Tsun Li,et al.  Trademark image retrieval using synthetic features for describing global shape and interior structure , 2009, Pattern Recognit..

[20]  Hinrich Schütze,et al.  Introduction to information retrieval , 2008 .

[21]  Prabir Kumar Biswas,et al.  Texture image retrieval using rotated wavelet filters , 2007, Pattern Recognit. Lett..

[22]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.

[23]  Stefan Carlsson,et al.  CNN Features Off-the-Shelf: An Astounding Baseline for Recognition , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[24]  Xiangyang Wang,et al.  An effective image retrieval scheme using color, texture and shape features , 2011, Comput. Stand. Interfaces.

[25]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[26]  Kai-Kuang Ma,et al.  Rotation-invariant and scale-invariant Gabor features for texture image retrieval , 2007, Image Vis. Comput..

[27]  B. S. Manjunath,et al.  Color and texture descriptors , 2001, IEEE Trans. Circuits Syst. Video Technol..

[28]  Christos Faloutsos,et al.  Efficient and effective Querying by Image Content , 1994, Journal of Intelligent Information Systems.

[29]  R. Suganya,et al.  Data Mining Concepts and Techniques , 2010 .

[30]  Gang Hua,et al.  Descriptive visual words and visual phrases for image applications , 2009, ACM Multimedia.

[31]  Megha Agarwal,et al.  Á trous gradient structure descriptor for content based image retrieval , 2012, International Journal of Multimedia Information Retrieval.

[32]  Q. M. Jonathan Wu,et al.  Modified color motif co-occurrence matrix for image indexing and retrieval , 2013, Comput. Electr. Eng..

[33]  Nam Chul Kim,et al.  Image retrieval using BDIP and BVLC moments , 2003, IEEE Trans. Circuits Syst. Video Technol..

[34]  G. S. Roinson Edge Detection by Compass Gradient Masks , 1989 .

[35]  Fang Liu,et al.  Periodicity, Directionality, and Randomness: Wold Features for Image Modeling and Retrieval , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  Peter Stanchev,et al.  Content-Based Image Retrieval Systems , 2001 .

[37]  B. S. Manjunath,et al.  An efficient low-dimensional color indexing scheme for region-based image retrieval , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[38]  Hong Zhang,et al.  A Fast and Effective Model for Wavelet Subband Histograms and Its Application in Texture Image Retrieval , 2006, IEEE Transactions on Image Processing.

[39]  King-Sun Fu,et al.  Shape Discrimination Using Fourier Descriptors , 1977, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  D. Venkata Rao,et al.  Local quantized extrema patterns for content-based natural and texture image retrieval , 2015, Human-centric Computing and Information Sciences.

[41]  Remco C. Veltkamp,et al.  A Survey of Content-Based Image Retrieval Systems , 2002 .

[42]  B. Prabhakara Rao,et al.  Age Group Classification of Facial Images Using Rank Based Edge Texture Unit (RETU) , 2015 .

[43]  James Ze Wang,et al.  Image retrieval: Ideas, influences, and trends of the new age , 2008, CSUR.

[44]  Shih-Fu Chang,et al.  Automated binary texture feature sets for image retrieval , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.

[45]  Markus A. Stricker,et al.  Similarity of color images , 1995, Electronic Imaging.

[46]  Fuhui Long,et al.  Fundamentals of Content-Based Image Retrieval , 2003 .

[47]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[48]  Rong-Tai Chen,et al.  A smart content-based image retrieval system based on color and texture feature , 2009, Image Vis. Comput..

[49]  Thomas S. Huang,et al.  Relevance feedback: a power tool for interactive content-based image retrieval , 1998, IEEE Trans. Circuits Syst. Video Technol..

[50]  Alvy Ray Smith,et al.  Color gamut transform pairs , 1978, SIGGRAPH.

[51]  Shih-Fu Chang,et al.  VisualSEEk: a fully automated content-based image query system , 1997, MULTIMEDIA '96.

[52]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[53]  Arnold W. M. Smeulders,et al.  PicToSeek: combining color and shape invariant features for image retrieval , 2000, IEEE Trans. Image Process..

[54]  Balqies Sadoun,et al.  The BAU GIS system using open source mapwindow , 2015, Human-centric Computing and Information Sciences.

[55]  Ramin Zabih,et al.  Comparing images using color coherence vectors , 1997, MULTIMEDIA '96.

[56]  Ying Liu,et al.  A survey of content-based image retrieval with high-level semantics , 2007, Pattern Recognit..

[57]  Robert M. Gray,et al.  Image retrieval using color histograms generated by Gauss mixture vector quantization , 2004, Comput. Vis. Image Underst..

[58]  Joaquim A. Jorge,et al.  Generic Shape Classification for Retrieval , 2005, GREC.

[59]  B. S. Manjunath,et al.  Texture Features for Browsing and Retrieval of Image Data , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[60]  Jeffrey Scott Vitter,et al.  Wavelet-based histograms for selectivity estimation , 1998, SIGMOD '98.

[61]  Spyros Liapis,et al.  Color and texture image retrieval using chromaticity histograms and wavelet frames , 2004, IEEE Transactions on Multimedia.

[62]  Dragutin Petkovic,et al.  Query by Image and Video Content: The QBIC System , 1995, Computer.

[63]  Chin-Chen Chang,et al.  Color image retrieval technique based on color features and image bitmap , 2007, Inf. Process. Manag..

[64]  Joachim M. Buhmann,et al.  Non-parametric similarity measures for unsupervised texture segmentation and image retrieval , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[65]  Dong-Sik Jang,et al.  Expert system for color image retrieval , 2005, Expert Syst. Appl..

[66]  James Ze Wang,et al.  SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture LIbraries , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[67]  Konstantinos N. Plataniotis,et al.  A Novel Vector-Based Approach to Color Image Retrieval Using a Vector Angular-Based Distance Measure , 1999, Comput. Vis. Image Underst..

[68]  Cordelia Schmid,et al.  Aggregating local descriptors into a compact image representation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[69]  Anil K. Jain,et al.  Image retrieval using color and shape , 1996, Pattern Recognit..

[70]  Jiawei Han,et al.  Data Mining: Concepts and Techniques , 2000 .

[71]  Jing Huang,et al.  Image indexing using color correlograms , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[72]  R. Manmatha,et al.  Image retrieval using Markov Random Fields and global image features , 2010, CIVR '10.

[73]  Lei Guo,et al.  A shape-based image retrieval method using salient edges , 2003, Signal Process. Image Commun..