Effects of long term dietary phenethyl isothiocyanate on the microsomal metabolism of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol in F344 rats.

Phenethyl isothiocyanate (PEITC), a cruciferous vegetable component, inhibits lung tumor induction by the tobacco specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). To gain insight into the mechanism of PEITC lung tumor inhibition, we examined, in male F344 rats, the effects of dietary PEITC (3 micromol/g NIH-07 diet) in combination with NNK treatment (1.76 mg/kg, s.c., three times a week) for 4, 12 and 20 weeks on liver and lung microsomal metabolism of NNK and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), a major metabolite of NNK and also a lung carcinogen. This was compared with rats fed NIH-07 diet, without PEITC, and treated with NNK alone or saline. The protocol was identical to that employed for inhibition of lung tumorigenesis by PEITC. We observed decreased rates of alpha-hydroxylation of NNK and NNAL in lung microsomes of 4-, 12- and 20-week PEITC + NNK treated rats compared with those treated with NNK or saline. NNK treatment alone also decreased lung alpha-methylene hydroxylation of NNK. Long-term NNK + PEITC administration did not significantly affect liver oxidative metabolism of NNK or NNAL, and did not affect the rate of glucuronidation of NNAL in liver microsomes when compared with rats treated with NNK or saline. Thus, PEITC selectively inhibited lung metabolic activation of NNK and NNAL. These results support the hypothesis that PEITC inhibits NNK-induced lung tumors by inhibiting metabolic activation of NNK in the lung. This study also demonstrated that PEITC inhibits lung alpha-hydroxylation of NNAL; this may play a role in PEITC inhibition of lung tumorigenesis by NNK.

[1]  S. Hecht,et al.  Evidence for an important role of DNA pyridyloxobutylation in rat lung carcinogenesis by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone: effects of dose and phenethyl isothiocyanate. , 1997, Cancer research.

[2]  P. Talalay,et al.  Anticarcinogenic activities of organic isothiocyanates: chemistry and mechanisms. , 1994, Cancer research.

[3]  P. Thomas,et al.  Mechanisms of inhibition of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone bioactivation in mouse by dietary phenethyl isothiocyanate. , 1993, Cancer research.

[4]  Chung S. Yang,et al.  Structure-activity relationships of arylalkyl isothiocyanates for the inhibition of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone metabolism and the modulation of xenobiotic-metabolizing enzymes in rats and mice. , 1993, Carcinogenesis.

[5]  P. Thomas,et al.  Effects of phenethyl isothiocyanate, a carcinogenesis inhibitor, on xenobiotic-metabolizing enzymes and nitrosamine metabolism in rats. , 1992, Carcinogenesis.

[6]  P. Thomas,et al.  Metabolic activation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone as measured by DNA alkylation in vitro and its inhibition by isothiocyanates. , 1991, Cancer research.

[7]  S. Hecht,et al.  Metabolism of tobacco-specific N-nitrosamines by cultured human tissues. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[8]  S. Hecht,et al.  Metabolism in the F344 rat of 4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone, a tobacco-specific carcinogen. , 1980, Cancer research.

[9]  S. Hecht,et al.  Chemical Studies on Tobacco Smoke: LI: Studies on Non-Volatile Nitrosamines in Tobacco , 1977 .

[10]  S. Schwartz,et al.  THE METABOLIC FORMATION OF GAMMA-(3-PYRIDYL)-GAMMA-HYDROXYBUTYRIC ACID AND ITS POSSIBLE INTERMEDIARY ROLE IN THE MAMMALIAN METABOLISM OF NICOTINE. , 1964, The Journal of biological chemistry.