Rapidly converging numerical algorithms for models of population dynamics

We propose algorithms for the approximation of the age distributions of populations modeled by the McKendrick-von Foerster and the Gurtin-MacCamy systems both in one- and two-sex versions. For the one-sex model methods of second and fourth order are proposed. For the two-sex model a second order method is described. In each case the convergence is demonstrated. Several numerical examples are given.