Progress in solid electrolytes toward realizing solid-state lithium batteries

Abstract Solid-state lithium batteries have become more important than ever, because their high reliability as well as high energy density meet the requirements for energy storage in many aspects of the coming low carbon society. Solid electrolytes with high ionic conductivities are inevitable for realizing the solid-state lithium batteries, and the studies have been focused mainly on sulfide and oxide-based electrolytes. Sulfide-based solid electrolytes are advantageous to batteries owing to their high ionic conductivities and deformability. Although they show high resistance at the interface to cathode materials, interposing thin films of oxide-based solid electrolytes into the interface has successfully reduced the interfacial resistance. Combination of the highly-conductive sulfide electrolyte and the interface design have made performance of the sulfide-type solid-state batteries comparable or superior to current lithium-ion batteries. On the other hand, oxide-based electrolytes show higher chemical stability than sulfides, which is beneficial for manufacturing process. Although the highest conductivities have reached 10−3 S cm−1 also in oxides, practical performance has not been achieved in the oxide system due to the high grain boundary resistance.

[1]  Yizhou Zhu,et al.  First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries , 2016 .

[2]  Steven D. Lacey,et al.  Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface , 2017, Science Advances.

[3]  Miaofang Chi,et al.  Solid Electrolyte: the Key for High‐Voltage Lithium Batteries , 2015 .

[4]  Tsutomu Minami,et al.  Recent progress of glass and glass-ceramics as solid electrolytes for lithium secondary batteries , 2006 .

[5]  J. Kennedy,et al.  A Highly Conductive Li+‐Glass System: ( 1 − x ) ( 0.4SiS2 ‐ 0.6Li2 S ) ‐ xLil , 1986 .

[6]  K. Kanehori,et al.  Thin film solid electrolyte and its application to secondary lithium cell , 1983 .

[7]  Michel Ribes,et al.  Sulfide glasses: Glass forming region, structure and ionic conduction of glasses in Na2SXS2 (XSi; Ge), Na2SP2S5 and Li2SGeS2 systems , 1980 .

[8]  Annie Pradel,et al.  Electrical properties of lithium conductive silicon sulfide glasses prepared by twin roller quenching , 1986 .

[9]  Venkataraman Thangadurai,et al.  Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. , 2014, Chemical Society reviews.

[10]  R. Huggins Lithium alloy negative electrodes formed from convertible oxides , 1998 .

[11]  Y. Sadaoka,et al.  The Electrical Properties of Ceramic Electrolytes for LiM x Ti2 − x ( PO 4 ) 3 + yLi2 O , M = Ge , Sn , Hf , and Zr Systems , 1993 .

[12]  B. Jang,et al.  Reviving rechargeable lithium metal batteries: enabling next-generation high-energy and high-power cells , 2012 .

[13]  Takeshi Abe,et al.  Solvated Li-Ion Transfer at Interface Between Graphite and Electrolyte , 2004 .

[14]  Venkataraman Thangadurai,et al.  Novel Fast Lithium Ion Conduction in Garnet‐Type Li5La3M2O12 (M = Nb, Ta) , 2003 .

[15]  Venkataraman Thangadurai,et al.  Fast Lithium Ion Conduction in Garnet‐Type Li7La3Zr2O12 , 2007 .

[16]  R. Mercier,et al.  De nouveaux verres conducteurs par l'ion lithium et leurs applications dans des generateurs electrochimiques , 1983 .

[17]  Gerbrand Ceder,et al.  Interface Stability in Solid-State Batteries , 2016 .

[18]  Kun Fu,et al.  Protected Lithium‐Metal Anodes in Batteries: From Liquid to Solid , 2017, Advanced materials.

[19]  P. Hagenmuller,et al.  Preparation and ionic conductivity of new B2S3-Li2S-LiI glasses , 1983 .

[20]  Fuminori Mizuno,et al.  All-solid-state Li/S batteries with highly conductive glass–ceramic electrolytes , 2003 .

[21]  Nancy J. Dudney,et al.  Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries , 1992 .

[22]  S. Adams,et al.  Crystal structure of a superionic conductor, Li7P3S11 , 2007 .

[23]  B. Scrosati,et al.  Silver solid-state batteries: A 33 years storage realities , 2007 .

[24]  Asma Sharafi,et al.  Interfacial Stability of Li Metal-Solid Electrolyte Elucidated via in Situ Electron Microscopy. , 2016, Nano letters.

[25]  Hui Wu,et al.  Designing nanostructured Si anodes for high energy lithium ion batteries , 2012 .

[26]  Tsutomu Miyasaka,et al.  Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material , 1997 .

[27]  M. Osada,et al.  High performance silicon-based anodes in solid-state lithium batteries , 2014 .

[28]  M. Haruta,et al.  Negligible "negative space-charge layer effects" at oxide-electrolyte/electrode interfaces of thin-film batteries. , 2015, Nano letters.

[29]  Kunlun Hong,et al.  Anomalous high ionic conductivity of nanoporous β-Li3PS4. , 2013, Journal of the American Chemical Society.

[30]  K. Takada,et al.  An amorphous Si film anode for all-solid-state lithium batteries , 2014 .

[31]  M. Hirayama,et al.  Discharge Performance of All-Solid-State Battery Using a Lithium Superionic Conductor Li10GeP2S12 , 2012 .

[32]  S. Kondo,et al.  Application of Li3PO4-Li2S-SiS2 glass to the solid state secondary batteries , 1995 .

[33]  A. Yaroslavtsev Solid electrolytes: main prospects of research and development , 2016 .

[34]  K. Takada,et al.  High rate capabilities of all-solid-state lithium secondary batteries using Li4Ti5O12-coated LiNi0.8Co0.15Al0.05O2 and a sulfide-based solid electrolyte , 2011 .

[35]  Ryota Watanabe,et al.  All solid-state battery with sulfur electrode and thio-LISICON electrolyte , 2008 .

[36]  Rainer Waser,et al.  Electrical properties of the grain boundaries of oxygen ion conductors: Acceptor-doped zirconia and ceria , 2006 .

[37]  Kota Suzuki,et al.  Structure-property relationships in lithium superionic conductors having a Li10GeP2S12-type structure. , 2015, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[38]  C. Liang,et al.  Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion-conducting solid electrolytes , 2014 .

[39]  Wolfgang G. Zeier,et al.  Direct Observation of the Interfacial Instability of the Fast Ionic Conductor Li10GeP2S12 at the Lithium Metal Anode , 2016 .

[40]  Piercarlo Mustarelli,et al.  7Li and 19F diffusion coefficients and thermal properties of non-aqueous electrolyte solutions for rechargeable lithium batteries , 1999 .

[41]  Y. Sadaoka,et al.  Ionic Conductivity of the Lithium Titanium Phosphate ( Li1 + X M X Ti2 − X ( PO 4 ) 3 , M = Al , Sc , Y , and La ) Systems , 1989 .

[42]  Liquan Chen,et al.  High lithium ion conductivity in the perovskite-type compounds Ln12Li12TiO3(Ln=La,Pr,Nd,Sm) , 1994 .

[43]  H. Hong,et al.  Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors☆ , 1978 .

[44]  Kazunori Takada,et al.  A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries , 2014 .

[45]  S. Kondo,et al.  Compatibility of Lithium Ion Conductive Sulfide Glass with Carbon-Lithium Electrode , 2003 .

[46]  J. Tarascon,et al.  Mechanochemical synthesis of Li-argyrodite Li6PS5X (X = Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application , 2012 .

[47]  A. Hayashi,et al.  5 V class LiNi0.5Mn1.5O4 positive electrode coated with Li3PO4 thin film for all-solid-state batteries using sulfide solid electrolyte , 2016 .

[48]  N. Imanishi,et al.  Lithium Dendrite Formation on a Lithium Metal Anode from Liquid, Polymer and Solid Electrolytes , 2016 .

[49]  A. West,et al.  Review of crystalline lithium-ion conductors suitable for high temperature battery applications , 1997 .

[50]  Yutao Li,et al.  Optimizing Li+ conductivity in a garnet framework , 2012 .

[51]  Donald J. Siegel,et al.  Grain Boundary Contributions to Li-Ion Transport in the Solid Electrolyte Li7La3Zr2O12 (LLZO) , 2017 .

[52]  Peter Lamp,et al.  Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. , 2015, Chemical reviews.

[53]  N. Dudney,et al.  “Lithium‐Free” Thin‐Film Battery with In Situ Plated Li Anode , 2000 .

[54]  Yoshiyuki Inaguma,et al.  A rechargeable lithium–air battery using a lithium ion-conducting lanthanum lithium titanate ceramics as an electrolyte separator , 2013 .

[55]  Yue Wu,et al.  Gallium-Doped Li7La3Zr2O12 Garnet-Type Electrolytes with High Lithium-Ion Conductivity. , 2017, ACS applied materials & interfaces.

[56]  K. Tadanaga,et al.  Preparation of Li 3 BO 3 -Li 2 SO 4 glass-ceramic electrolytes for all-oxide lithium batteries , 2014 .

[57]  Kazunori Takada,et al.  Progress and prospective of solid-state lithium batteries , 2013 .

[58]  Brian C. Sales,et al.  Characterization of Thin‐Film Rechargeable Lithium Batteries with Lithium Cobalt Oxide Cathodes , 1996 .

[59]  Joachim Maier,et al.  Ionic conduction in space charge regions , 1995 .

[60]  Y. Aihara,et al.  Preparation and electrochemical properties of LiAlO2-coated Li(Ni1/3Mn1/3Co1/3)O2 for all-solid-state batteries , 2014 .

[61]  N. Imanaka Novel multivalent cation conducting ceramics and their application , 2005 .

[62]  T. Takeuchi,et al.  All-solid-state lithium-ion battery using Li2.2C0.8B0.2O3 electrolyte , 2016 .

[63]  T. Minami,et al.  Stabilization of superionic α-Agl at room temperature in a glass matrix , 1991, Nature.

[64]  T. Minami,et al.  Superionic Conducting Glasses: Glass Formation and Conductivity in the AgI ‐ Ag2 O ‐ P 2 O 5 System , 1977 .

[65]  G. Robert,et al.  Superionic conduction in Li2S - P2S5 - LiI - glasses , 1981 .

[66]  A. Hayashi,et al.  Evaluation of elastic modulus of Li2S–P2S5 glassy solid electrolyte by ultrasonic sound velocity measurement and compression test , 2013 .

[67]  L. Nazar,et al.  Advances in Li–S batteries , 2010 .

[68]  J. Bates Thin-Film Lithium and Lithium-Ion Batteries , 2000 .

[69]  Yet-Ming Chiang,et al.  Compliant Yet Brittle Mechanical Behavior of Li2S–P2S5 Lithium‐Ion‐Conducting Solid Electrolyte , 2017 .

[70]  Yulong Sun,et al.  Superionic Conductors: Li10+δ[SnySi1–y]1+δP2−δS12 with a Li10GeP2S12-type Structure in the Li3PS4–Li4SnS4–Li4SiS4 Quasi-ternary System , 2017 .

[71]  M. Wilkening,et al.  Highly Mobile Ions: Low-Temperature NMR Directly Probes Extremely Fast Li+ Hopping in Argyrodite-Type Li6PS5Br , 2013 .

[72]  T. Ohno,et al.  Positive and Negative Aspects of Interfaces in Solid-State Batteries , 2018 .

[73]  J. Maier,et al.  Nanoionics: ion transport and electrochemical storage in confined systems , 2005, Nature materials.

[74]  John B. Goodenough,et al.  Fast Na+-ion transport in skeleton structures , 1976 .

[75]  T. Sasaki,et al.  Self-Organized Core–Shell Structure for High-Power Electrode in Solid-State Lithium Batteries , 2011 .

[76]  S. Kondo,et al.  Synthesis and electrochemical properties of lithium ion conductive glass, Li3PO4Li2SSiS2 , 1994 .

[77]  Kota Suzuki,et al.  Bulk-Type All Solid-State Batteries with 5 V Class LiNi0.5Mn1.5O4 Cathode and Li10GeP2S12 Solid Electrolyte , 2016 .

[78]  A. Hayashi,et al.  Sulfide Solid Electrolyte with Favorable Mechanical Property for All-Solid-State Lithium Battery , 2013, Scientific Reports.

[79]  Liquan Chen,et al.  Candidate compounds with perovskite structure for high lithium ionic conductivity , 1994 .

[80]  Y. Sadaoka,et al.  Electrical property and sinterability of LiTi2(PO4)3 mixed with lithium salt (Li3PO4 or Li3BO3) , 1991 .

[81]  Kang Xu,et al.  Li^+-solvation/desolvation dictates interphasial processes on graphitic anode in Li ion cells , 2012 .

[82]  Shogo Komagata,et al.  All-solid-state lithium ion battery using garnet-type oxide and Li3BO3 solid electrolytes fabricated by screen-printing , 2013 .

[83]  Y. Iriyama,et al.  Temperature effects on cycling stability of Li plating/stripping on Ta-doped Li 7 La 3 Zr 2 O 12 , 2017 .

[84]  Xin Guo,et al.  Origin of the low grain boundary conductivity in lithium ion conducting perovskites: Li3xLa0.67-xTiO3. , 2017, Physical chemistry chemical physics : PCCP.

[85]  R. Murugan,et al.  Influence of sintering additives on densification and Li+ conductivity of Al doped Li7La3Zr2O12 lithium garnet , 2014 .

[86]  Yi Cui,et al.  Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.

[87]  K. Takada,et al.  Lithium ion conductive glass and its application to solid state batteries , 1998 .

[88]  Y. Takeda,et al.  Rechargeable all solid-state cell with high copper ion conductor and copper chevrel phase , 1987 .

[89]  G. Jellison,et al.  A Stable Thin‐Film Lithium Electrolyte: Lithium Phosphorus Oxynitride , 1997 .

[90]  A. Hayashi,et al.  Structural change of Li2S-P2S5 sulfide solid electrolytes in the atmosphere , 2011 .

[91]  C. Liang Conduction Characteristics of the Lithium Iodide‐Aluminum Oxide Solid Electrolytes , 1973 .

[92]  Takashi Uchida,et al.  High ionic conductivity in lithium lanthanum titanate , 1993 .

[93]  K. Tadanaga,et al.  New, Highly Ion‐Conductive Crystals Precipitated from Li2S–P2S5 Glasses , 2005 .

[94]  Xianhui Bu,et al.  Synthetic design of crystalline inorganic chalcogenides exhibiting fast-ion conductivity , 2003, Nature.

[95]  K. Tadanaga,et al.  Liquid-phase synthesis of a Li3PS4 solid electrolyte using N-methylformamide for all-solid-state lithium batteries , 2014 .

[96]  M. Osada,et al.  Interfacial modification for high-power solid-state lithium batteries , 2008 .

[97]  Tetsuro Kobayashi,et al.  High lithium ionic conductivity in the garnet-type oxide Li7−X La3(Zr2−X, NbX)O12 (X = 0–2) , 2011 .

[98]  M. Klingler,et al.  Coulometric titration of substituted LixLa(2−x)/3 TiO3 , 1997 .

[99]  S. Kondo,et al.  Solid-state lithium battery with graphite anode , 2003 .

[100]  B. Owens Solid state electrolytes : overview of materials and applications during the last third of the Twentieth Century , 2000 .

[101]  Donald J. Siegel,et al.  Elastic Properties of the Solid Electrolyte Li7La3Zr2O12 (LLZO) , 2016 .

[102]  R. Dedryvère,et al.  Electrode/Electrolyte Interface Reactivity in High-Voltage Spinel LiMn1.6Ni0.4O4/Li4Ti5O12 Lithium-Ion Battery , 2010 .

[103]  M. Osada,et al.  Interfacial phenomena in solid-state lithium battery with sulfide solid electrolyte , 2012 .

[104]  K. Tadanaga,et al.  Improvement of electrochemical performance of all-solid-state lithium secondary batteries by surface modification of LiMn2O4 positive electrode , 2011 .

[105]  C. Delmas,et al.  On the structure of Li3Ti2(PO4)3 , 2002 .

[106]  K. Takada,et al.  Anode properties of silicon-rich amorphous silicon suboxide films in all-solid-state lithium batteries , 2016 .

[107]  N. Holzwarth,et al.  Structures, Li + mobilities, and interfacial properties of solid electrolytes Li 3 PS 4 and Li 3 PO 4 from first principles , 2013 .

[108]  Minoru Osada,et al.  LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries , 2007 .

[109]  Ki‐Hyun Kim,et al.  High lithium ion conductive Li7La3Zr2O12 by inclusion of both Al and Si , 2011 .

[110]  Tetsuro Nakamura,et al.  Lithium ion conductivity in the perovskite-type LiTaO3-SrTiO3 solid solution , 1995 .

[111]  Atsushi Sakuda,et al.  Improvement of High-Rate Performance of All-Solid-State Lithium Secondary Batteries Using LiCoO2 Coated with Li2O-SiO2 Glasses , 2008 .

[112]  M. Doyle,et al.  Simulation and Optimization of the Dual Lithium Ion Insertion Cell , 1994 .

[113]  A. West,et al.  Li+ ion conducting γ solid solutions in the systems Li4XO4-Li3YO4: X=Si, Ge, Ti; Y=P, As, V; Li4XO4-LiZO2: Z=Al, Ga, Cr and Li4GeO4-Li2CaGeO4 , 1985 .

[114]  Zhuobin Li,et al.  Recent Advances in Inorganic Solid Electrolytes for Lithium Batteries , 2014, Front. Energy Res..

[115]  Kun Fu,et al.  Negating interfacial impedance in garnet-based solid-state Li metal batteries. , 2017, Nature materials.

[116]  K. Tadanaga,et al.  Modification of Interface Between LiCoO2 Electrode and Li2S – P2S5 Solid Electrolyte Using Li2O – SiO2 Glassy Layers , 2009 .

[117]  T. Minami,et al.  Thermal and electrical properties of rapidly quenched glasses in the systems Li2S_SiS2_LixMOy (LixMOy = Li4SiO4, Li2SO4) , 1995 .

[118]  M. Whittingham,et al.  Electrical Energy Storage and Intercalation Chemistry , 1976, Science.

[119]  Satoshi Hori,et al.  High-power all-solid-state batteries using sulfide superionic conductors , 2016, Nature Energy.

[120]  Boone B. Owens,et al.  Ambient temperature solid state batteries , 1992 .

[121]  J. Goodenough Challenges for Rechargeable Li Batteries , 2010 .

[122]  Jürgen Janek,et al.  A solid future for battery development , 2016, Nature Energy.

[123]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[124]  Venkataraman Thangadurai,et al.  Li6ALa2Ta2O12 (A = Sr, Ba): Novel Garnet‐Like Oxides for Fast Lithium Ion Conduction , 2005 .

[125]  M. Osada,et al.  Synthesis of phosphorous sulfide solid electrolyte and all-solid-state lithium batteries with graphite electrode , 2005 .

[126]  C. Tubandt,et al.  Molekularzustand und elektrisches Leitvermögen kristallisierter Salze , 1914 .

[127]  Ryoji Kanno,et al.  Lithium Ionic Conductor Thio-LISICON: The Li2 S ­ GeS2 ­ P 2 S 5 System , 2001 .

[128]  W Greatbatch,et al.  The solid-state lithium battery: a new improved chemical power source for implantable cardiac pacemakers. , 1971, IEEE transactions on bio-medical engineering.

[129]  Y. Sadaoka,et al.  Ionic Conductivity of Solid Electrolytes Based on Lithium Titanium Phosphate , 1990 .

[130]  Venkataraman Thangadurai,et al.  Lithium Lanthanum Titanates: A Review , 2003 .

[131]  Hongxia Geng,et al.  Role of amorphous boundary layer in enhancing ionic conductivity of lithium–lanthanum–titanate electrolyte , 2010 .

[132]  M. Osada,et al.  Enhancement of the High‐Rate Capability of Solid‐State Lithium Batteries by Nanoscale Interfacial Modification , 2006 .

[133]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[134]  B. McCloskey,et al.  Promising Routes to a High Li+ Transference Number Electrolyte for Lithium Ion Batteries , 2017 .

[135]  Yizhou Zhu,et al.  Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations. , 2015, ACS applied materials & interfaces.

[136]  Philippe Knauth,et al.  Inorganic solid Li ion conductors: An overview , 2009 .

[137]  Y. Chiang,et al.  Mechanism of Lithium Metal Penetration through Inorganic Solid Electrolytes , 2017 .

[138]  R. D. Shannon,et al.  New Li solid electrolytes , 1977 .

[139]  Yo Kobayashi,et al.  Densification of LiTi2(PO4)3-based solid electrolytes by spark-plasma-sintering , 1999 .

[140]  Sebastian Wenzel,et al.  Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte , 2016 .

[141]  B. Owens,et al.  High-Conductivity Solid Electrolytes: MAg4I5 , 1967, Science.

[142]  Y. Orikasa,et al.  Effect of average and local structures on lithium ion conductivity in La2/3−xLi3xTiO3 , 2011 .

[143]  Y. Idemoto,et al.  Crystal Structure of Fast Lithium-ion-conducting Cubic Li7La3Zr2O12 , 2011 .