Progress in solid electrolytes toward realizing solid-state lithium batteries
暂无分享,去创建一个
[1] Yizhou Zhu,et al. First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries , 2016 .
[2] Steven D. Lacey,et al. Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface , 2017, Science Advances.
[3] Miaofang Chi,et al. Solid Electrolyte: the Key for High‐Voltage Lithium Batteries , 2015 .
[4] Tsutomu Minami,et al. Recent progress of glass and glass-ceramics as solid electrolytes for lithium secondary batteries , 2006 .
[5] J. Kennedy,et al. A Highly Conductive Li+‐Glass System: ( 1 − x ) ( 0.4SiS2 ‐ 0.6Li2 S ) ‐ xLil , 1986 .
[6] K. Kanehori,et al. Thin film solid electrolyte and its application to secondary lithium cell , 1983 .
[7] Michel Ribes,et al. Sulfide glasses: Glass forming region, structure and ionic conduction of glasses in Na2SXS2 (XSi; Ge), Na2SP2S5 and Li2SGeS2 systems , 1980 .
[8] Annie Pradel,et al. Electrical properties of lithium conductive silicon sulfide glasses prepared by twin roller quenching , 1986 .
[9] Venkataraman Thangadurai,et al. Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. , 2014, Chemical Society reviews.
[10] R. Huggins. Lithium alloy negative electrodes formed from convertible oxides , 1998 .
[11] Y. Sadaoka,et al. The Electrical Properties of Ceramic Electrolytes for LiM x Ti2 − x ( PO 4 ) 3 + yLi2 O , M = Ge , Sn , Hf , and Zr Systems , 1993 .
[12] B. Jang,et al. Reviving rechargeable lithium metal batteries: enabling next-generation high-energy and high-power cells , 2012 .
[13] Takeshi Abe,et al. Solvated Li-Ion Transfer at Interface Between Graphite and Electrolyte , 2004 .
[14] Venkataraman Thangadurai,et al. Novel Fast Lithium Ion Conduction in Garnet‐Type Li5La3M2O12 (M = Nb, Ta) , 2003 .
[15] Venkataraman Thangadurai,et al. Fast Lithium Ion Conduction in Garnet‐Type Li7La3Zr2O12 , 2007 .
[16] R. Mercier,et al. De nouveaux verres conducteurs par l'ion lithium et leurs applications dans des generateurs electrochimiques , 1983 .
[17] Gerbrand Ceder,et al. Interface Stability in Solid-State Batteries , 2016 .
[18] Kun Fu,et al. Protected Lithium‐Metal Anodes in Batteries: From Liquid to Solid , 2017, Advanced materials.
[19] P. Hagenmuller,et al. Preparation and ionic conductivity of new B2S3-Li2S-LiI glasses , 1983 .
[20] Fuminori Mizuno,et al. All-solid-state Li/S batteries with highly conductive glass–ceramic electrolytes , 2003 .
[21] Nancy J. Dudney,et al. Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries , 1992 .
[22] S. Adams,et al. Crystal structure of a superionic conductor, Li7P3S11 , 2007 .
[23] B. Scrosati,et al. Silver solid-state batteries: A 33 years storage realities , 2007 .
[24] Asma Sharafi,et al. Interfacial Stability of Li Metal-Solid Electrolyte Elucidated via in Situ Electron Microscopy. , 2016, Nano letters.
[25] Hui Wu,et al. Designing nanostructured Si anodes for high energy lithium ion batteries , 2012 .
[26] Tsutomu Miyasaka,et al. Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material , 1997 .
[27] M. Osada,et al. High performance silicon-based anodes in solid-state lithium batteries , 2014 .
[28] M. Haruta,et al. Negligible "negative space-charge layer effects" at oxide-electrolyte/electrode interfaces of thin-film batteries. , 2015, Nano letters.
[29] Kunlun Hong,et al. Anomalous high ionic conductivity of nanoporous β-Li3PS4. , 2013, Journal of the American Chemical Society.
[30] K. Takada,et al. An amorphous Si film anode for all-solid-state lithium batteries , 2014 .
[31] M. Hirayama,et al. Discharge Performance of All-Solid-State Battery Using a Lithium Superionic Conductor Li10GeP2S12 , 2012 .
[32] S. Kondo,et al. Application of Li3PO4-Li2S-SiS2 glass to the solid state secondary batteries , 1995 .
[33] A. Yaroslavtsev. Solid electrolytes: main prospects of research and development , 2016 .
[34] K. Takada,et al. High rate capabilities of all-solid-state lithium secondary batteries using Li4Ti5O12-coated LiNi0.8Co0.15Al0.05O2 and a sulfide-based solid electrolyte , 2011 .
[35] Ryota Watanabe,et al. All solid-state battery with sulfur electrode and thio-LISICON electrolyte , 2008 .
[36] Rainer Waser,et al. Electrical properties of the grain boundaries of oxygen ion conductors: Acceptor-doped zirconia and ceria , 2006 .
[37] Kota Suzuki,et al. Structure-property relationships in lithium superionic conductors having a Li10GeP2S12-type structure. , 2015, Acta crystallographica Section B, Structural science, crystal engineering and materials.
[38] C. Liang,et al. Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion-conducting solid electrolytes , 2014 .
[39] Wolfgang G. Zeier,et al. Direct Observation of the Interfacial Instability of the Fast Ionic Conductor Li10GeP2S12 at the Lithium Metal Anode , 2016 .
[40] Piercarlo Mustarelli,et al. 7Li and 19F diffusion coefficients and thermal properties of non-aqueous electrolyte solutions for rechargeable lithium batteries , 1999 .
[41] Y. Sadaoka,et al. Ionic Conductivity of the Lithium Titanium Phosphate ( Li1 + X M X Ti2 − X ( PO 4 ) 3 , M = Al , Sc , Y , and La ) Systems , 1989 .
[42] Liquan Chen,et al. High lithium ion conductivity in the perovskite-type compounds Ln12Li12TiO3(Ln=La,Pr,Nd,Sm) , 1994 .
[43] H. Hong,et al. Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors☆ , 1978 .
[44] Kazunori Takada,et al. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries , 2014 .
[45] S. Kondo,et al. Compatibility of Lithium Ion Conductive Sulfide Glass with Carbon-Lithium Electrode , 2003 .
[46] J. Tarascon,et al. Mechanochemical synthesis of Li-argyrodite Li6PS5X (X = Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application , 2012 .
[47] A. Hayashi,et al. 5 V class LiNi0.5Mn1.5O4 positive electrode coated with Li3PO4 thin film for all-solid-state batteries using sulfide solid electrolyte , 2016 .
[48] N. Imanishi,et al. Lithium Dendrite Formation on a Lithium Metal Anode from Liquid, Polymer and Solid Electrolytes , 2016 .
[49] A. West,et al. Review of crystalline lithium-ion conductors suitable for high temperature battery applications , 1997 .
[50] Yutao Li,et al. Optimizing Li+ conductivity in a garnet framework , 2012 .
[51] Donald J. Siegel,et al. Grain Boundary Contributions to Li-Ion Transport in the Solid Electrolyte Li7La3Zr2O12 (LLZO) , 2017 .
[52] Peter Lamp,et al. Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. , 2015, Chemical reviews.
[53] N. Dudney,et al. “Lithium‐Free” Thin‐Film Battery with In Situ Plated Li Anode , 2000 .
[54] Yoshiyuki Inaguma,et al. A rechargeable lithium–air battery using a lithium ion-conducting lanthanum lithium titanate ceramics as an electrolyte separator , 2013 .
[55] Yue Wu,et al. Gallium-Doped Li7La3Zr2O12 Garnet-Type Electrolytes with High Lithium-Ion Conductivity. , 2017, ACS applied materials & interfaces.
[56] K. Tadanaga,et al. Preparation of Li 3 BO 3 -Li 2 SO 4 glass-ceramic electrolytes for all-oxide lithium batteries , 2014 .
[57] Kazunori Takada,et al. Progress and prospective of solid-state lithium batteries , 2013 .
[58] Brian C. Sales,et al. Characterization of Thin‐Film Rechargeable Lithium Batteries with Lithium Cobalt Oxide Cathodes , 1996 .
[59] Joachim Maier,et al. Ionic conduction in space charge regions , 1995 .
[60] Y. Aihara,et al. Preparation and electrochemical properties of LiAlO2-coated Li(Ni1/3Mn1/3Co1/3)O2 for all-solid-state batteries , 2014 .
[61] N. Imanaka. Novel multivalent cation conducting ceramics and their application , 2005 .
[62] T. Takeuchi,et al. All-solid-state lithium-ion battery using Li2.2C0.8B0.2O3 electrolyte , 2016 .
[63] T. Minami,et al. Stabilization of superionic α-Agl at room temperature in a glass matrix , 1991, Nature.
[64] T. Minami,et al. Superionic Conducting Glasses: Glass Formation and Conductivity in the AgI ‐ Ag2 O ‐ P 2 O 5 System , 1977 .
[65] G. Robert,et al. Superionic conduction in Li2S - P2S5 - LiI - glasses , 1981 .
[66] A. Hayashi,et al. Evaluation of elastic modulus of Li2S–P2S5 glassy solid electrolyte by ultrasonic sound velocity measurement and compression test , 2013 .
[67] L. Nazar,et al. Advances in Li–S batteries , 2010 .
[68] J. Bates. Thin-Film Lithium and Lithium-Ion Batteries , 2000 .
[69] Yet-Ming Chiang,et al. Compliant Yet Brittle Mechanical Behavior of Li2S–P2S5 Lithium‐Ion‐Conducting Solid Electrolyte , 2017 .
[70] Yulong Sun,et al. Superionic Conductors: Li10+δ[SnySi1–y]1+δP2−δS12 with a Li10GeP2S12-type Structure in the Li3PS4–Li4SnS4–Li4SiS4 Quasi-ternary System , 2017 .
[71] M. Wilkening,et al. Highly Mobile Ions: Low-Temperature NMR Directly Probes Extremely Fast Li+ Hopping in Argyrodite-Type Li6PS5Br , 2013 .
[72] T. Ohno,et al. Positive and Negative Aspects of Interfaces in Solid-State Batteries , 2018 .
[73] J. Maier,et al. Nanoionics: ion transport and electrochemical storage in confined systems , 2005, Nature materials.
[74] John B. Goodenough,et al. Fast Na+-ion transport in skeleton structures , 1976 .
[75] T. Sasaki,et al. Self-Organized Core–Shell Structure for High-Power Electrode in Solid-State Lithium Batteries , 2011 .
[76] S. Kondo,et al. Synthesis and electrochemical properties of lithium ion conductive glass, Li3PO4Li2SSiS2 , 1994 .
[77] Kota Suzuki,et al. Bulk-Type All Solid-State Batteries with 5 V Class LiNi0.5Mn1.5O4 Cathode and Li10GeP2S12 Solid Electrolyte , 2016 .
[78] A. Hayashi,et al. Sulfide Solid Electrolyte with Favorable Mechanical Property for All-Solid-State Lithium Battery , 2013, Scientific Reports.
[79] Liquan Chen,et al. Candidate compounds with perovskite structure for high lithium ionic conductivity , 1994 .
[80] Y. Sadaoka,et al. Electrical property and sinterability of LiTi2(PO4)3 mixed with lithium salt (Li3PO4 or Li3BO3) , 1991 .
[81] Kang Xu,et al. Li^+-solvation/desolvation dictates interphasial processes on graphitic anode in Li ion cells , 2012 .
[82] Shogo Komagata,et al. All-solid-state lithium ion battery using garnet-type oxide and Li3BO3 solid electrolytes fabricated by screen-printing , 2013 .
[83] Y. Iriyama,et al. Temperature effects on cycling stability of Li plating/stripping on Ta-doped Li 7 La 3 Zr 2 O 12 , 2017 .
[84] Xin Guo,et al. Origin of the low grain boundary conductivity in lithium ion conducting perovskites: Li3xLa0.67-xTiO3. , 2017, Physical chemistry chemical physics : PCCP.
[85] R. Murugan,et al. Influence of sintering additives on densification and Li+ conductivity of Al doped Li7La3Zr2O12 lithium garnet , 2014 .
[86] Yi Cui,et al. Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.
[87] K. Takada,et al. Lithium ion conductive glass and its application to solid state batteries , 1998 .
[88] Y. Takeda,et al. Rechargeable all solid-state cell with high copper ion conductor and copper chevrel phase , 1987 .
[89] G. Jellison,et al. A Stable Thin‐Film Lithium Electrolyte: Lithium Phosphorus Oxynitride , 1997 .
[90] A. Hayashi,et al. Structural change of Li2S-P2S5 sulfide solid electrolytes in the atmosphere , 2011 .
[91] C. Liang. Conduction Characteristics of the Lithium Iodide‐Aluminum Oxide Solid Electrolytes , 1973 .
[92] Takashi Uchida,et al. High ionic conductivity in lithium lanthanum titanate , 1993 .
[93] K. Tadanaga,et al. New, Highly Ion‐Conductive Crystals Precipitated from Li2S–P2S5 Glasses , 2005 .
[94] Xianhui Bu,et al. Synthetic design of crystalline inorganic chalcogenides exhibiting fast-ion conductivity , 2003, Nature.
[95] K. Tadanaga,et al. Liquid-phase synthesis of a Li3PS4 solid electrolyte using N-methylformamide for all-solid-state lithium batteries , 2014 .
[96] M. Osada,et al. Interfacial modification for high-power solid-state lithium batteries , 2008 .
[97] Tetsuro Kobayashi,et al. High lithium ionic conductivity in the garnet-type oxide Li7−X La3(Zr2−X, NbX)O12 (X = 0–2) , 2011 .
[98] M. Klingler,et al. Coulometric titration of substituted LixLa(2−x)/3 TiO3 , 1997 .
[99] S. Kondo,et al. Solid-state lithium battery with graphite anode , 2003 .
[100] B. Owens. Solid state electrolytes : overview of materials and applications during the last third of the Twentieth Century , 2000 .
[101] Donald J. Siegel,et al. Elastic Properties of the Solid Electrolyte Li7La3Zr2O12 (LLZO) , 2016 .
[102] R. Dedryvère,et al. Electrode/Electrolyte Interface Reactivity in High-Voltage Spinel LiMn1.6Ni0.4O4/Li4Ti5O12 Lithium-Ion Battery , 2010 .
[103] M. Osada,et al. Interfacial phenomena in solid-state lithium battery with sulfide solid electrolyte , 2012 .
[104] K. Tadanaga,et al. Improvement of electrochemical performance of all-solid-state lithium secondary batteries by surface modification of LiMn2O4 positive electrode , 2011 .
[105] C. Delmas,et al. On the structure of Li3Ti2(PO4)3 , 2002 .
[106] K. Takada,et al. Anode properties of silicon-rich amorphous silicon suboxide films in all-solid-state lithium batteries , 2016 .
[107] N. Holzwarth,et al. Structures, Li + mobilities, and interfacial properties of solid electrolytes Li 3 PS 4 and Li 3 PO 4 from first principles , 2013 .
[108] Minoru Osada,et al. LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries , 2007 .
[109] Ki‐Hyun Kim,et al. High lithium ion conductive Li7La3Zr2O12 by inclusion of both Al and Si , 2011 .
[110] Tetsuro Nakamura,et al. Lithium ion conductivity in the perovskite-type LiTaO3-SrTiO3 solid solution , 1995 .
[111] Atsushi Sakuda,et al. Improvement of High-Rate Performance of All-Solid-State Lithium Secondary Batteries Using LiCoO2 Coated with Li2O-SiO2 Glasses , 2008 .
[112] M. Doyle,et al. Simulation and Optimization of the Dual Lithium Ion Insertion Cell , 1994 .
[113] A. West,et al. Li+ ion conducting γ solid solutions in the systems Li4XO4-Li3YO4: X=Si, Ge, Ti; Y=P, As, V; Li4XO4-LiZO2: Z=Al, Ga, Cr and Li4GeO4-Li2CaGeO4 , 1985 .
[114] Zhuobin Li,et al. Recent Advances in Inorganic Solid Electrolytes for Lithium Batteries , 2014, Front. Energy Res..
[115] Kun Fu,et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. , 2017, Nature materials.
[116] K. Tadanaga,et al. Modification of Interface Between LiCoO2 Electrode and Li2S – P2S5 Solid Electrolyte Using Li2O – SiO2 Glassy Layers , 2009 .
[117] T. Minami,et al. Thermal and electrical properties of rapidly quenched glasses in the systems Li2S_SiS2_LixMOy (LixMOy = Li4SiO4, Li2SO4) , 1995 .
[118] M. Whittingham,et al. Electrical Energy Storage and Intercalation Chemistry , 1976, Science.
[119] Satoshi Hori,et al. High-power all-solid-state batteries using sulfide superionic conductors , 2016, Nature Energy.
[120] Boone B. Owens,et al. Ambient temperature solid state batteries , 1992 .
[121] J. Goodenough. Challenges for Rechargeable Li Batteries , 2010 .
[122] Jürgen Janek,et al. A solid future for battery development , 2016, Nature Energy.
[123] Fujio Izumi,et al. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .
[124] Venkataraman Thangadurai,et al. Li6ALa2Ta2O12 (A = Sr, Ba): Novel Garnet‐Like Oxides for Fast Lithium Ion Conduction , 2005 .
[125] M. Osada,et al. Synthesis of phosphorous sulfide solid electrolyte and all-solid-state lithium batteries with graphite electrode , 2005 .
[126] C. Tubandt,et al. Molekularzustand und elektrisches Leitvermögen kristallisierter Salze , 1914 .
[127] Ryoji Kanno,et al. Lithium Ionic Conductor Thio-LISICON: The Li2 S GeS2 P 2 S 5 System , 2001 .
[128] W Greatbatch,et al. The solid-state lithium battery: a new improved chemical power source for implantable cardiac pacemakers. , 1971, IEEE transactions on bio-medical engineering.
[129] Y. Sadaoka,et al. Ionic Conductivity of Solid Electrolytes Based on Lithium Titanium Phosphate , 1990 .
[130] Venkataraman Thangadurai,et al. Lithium Lanthanum Titanates: A Review , 2003 .
[131] Hongxia Geng,et al. Role of amorphous boundary layer in enhancing ionic conductivity of lithium–lanthanum–titanate electrolyte , 2010 .
[132] M. Osada,et al. Enhancement of the High‐Rate Capability of Solid‐State Lithium Batteries by Nanoscale Interfacial Modification , 2006 .
[133] Yuki Kato,et al. A lithium superionic conductor. , 2011, Nature materials.
[134] B. McCloskey,et al. Promising Routes to a High Li+ Transference Number Electrolyte for Lithium Ion Batteries , 2017 .
[135] Yizhou Zhu,et al. Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations. , 2015, ACS applied materials & interfaces.
[136] Philippe Knauth,et al. Inorganic solid Li ion conductors: An overview , 2009 .
[137] Y. Chiang,et al. Mechanism of Lithium Metal Penetration through Inorganic Solid Electrolytes , 2017 .
[138] R. D. Shannon,et al. New Li solid electrolytes , 1977 .
[139] Yo Kobayashi,et al. Densification of LiTi2(PO4)3-based solid electrolytes by spark-plasma-sintering , 1999 .
[140] Sebastian Wenzel,et al. Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte , 2016 .
[141] B. Owens,et al. High-Conductivity Solid Electrolytes: MAg4I5 , 1967, Science.
[142] Y. Orikasa,et al. Effect of average and local structures on lithium ion conductivity in La2/3−xLi3xTiO3 , 2011 .
[143] Y. Idemoto,et al. Crystal Structure of Fast Lithium-ion-conducting Cubic Li7La3Zr2O12 , 2011 .