Tectonic collision and uplift of Wallacea triggered the global songbird radiation

[1]  Jeffrey P. Townsend,et al.  A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing , 2016, Nature.

[2]  Romdhane Rekaya,et al.  Adapterama I: Universal Stubs and Primers for Thousands of Dual-Indexed Illumina Libraries (iTru & iNext) , 2016, bioRxiv.

[3]  J. Cracraft,et al.  A new time tree reveals Earth history’s imprint on the evolution of modern birds , 2015, Science Advances.

[4]  Brant C. Faircloth,et al.  PHYLUCE is a software package for the analysis of conserved genomic loci , 2015, bioRxiv.

[5]  Bennet J. McComish,et al.  New Zealand Passerines Help Clarify the Diversification of Major Songbird Lineages during the Oligocene , 2015, Genome biology and evolution.

[6]  M. Phillips,et al.  Comment on “Whole-genome analyses resolve early branches in the tree of life of modern birds” , 2015, Science.

[7]  Andreas R. Pfenning,et al.  Comparative genomics reveals insights into avian genome evolution and adaptation , 2014, Science.

[8]  C. Russo,et al.  A Paleogene origin for crown passerines and the diversification of the Oscines in the New World. , 2015, Molecular phylogenetics and evolution.

[9]  J. G. Burleigh,et al.  Building the avian tree of life using a large-scale, sparse supermatrix. , 2015, Molecular phylogenetics and evolution.

[10]  Scott V Edwards,et al.  Estimating phylogenetic trees from genome‐scale data , 2015, Annals of the New York Academy of Sciences.

[11]  B. Kempenaers,et al.  Carotenoid‐based bill coloration functions as a social, not sexual, signal in songbirds (Aves: Passeriformes) , 2015, Journal of evolutionary biology.

[12]  Md. Shamsuzzoha Bayzid,et al.  Whole-genome analyses resolve early branches in the tree of life of modern birds , 2014, Science.

[13]  Laura Salter Kubatko,et al.  Quartet Inference from SNP Data Under the Coalescent Model , 2014, Bioinform..

[14]  N. Matzke,et al.  Model selection in historical biogeography reveals that founder-event speciation is a crucial process in Island Clades. , 2014, Systematic biology.

[15]  Tandy J. Warnow,et al.  ASTRAL: genome-scale coalescent-based species tree estimation , 2014, Bioinform..

[16]  Alexandros Stamatakis,et al.  ExaBayes: Massively Parallel Bayesian Tree Inference for the Whole-Genome Era , 2014, Molecular biology and evolution.

[17]  M. W. Butler,et al.  Ancient origins and multiple appearances of carotenoid-pigmented feathers in birds , 2014, Proceedings of the Royal Society B: Biological Sciences.

[18]  R. Ricklefs,et al.  Clade extinction appears to balance species diversification in sister lineages of Afro-Oriental passerine birds , 2014, Proceedings of the National Academy of Sciences.

[19]  B. Enquist,et al.  Ecological traits influence the phylogenetic structure of bird species co-occurrences worldwide. , 2014, Ecology letters.

[20]  Laura Kubatko,et al.  Identifiability of the unrooted species tree topology under the coalescent model with time-reversible substitution processes, site-specific rate variation, and invariable sites. , 2014, Journal of theoretical biology.

[21]  Thomas Guillerme,et al.  Ecology and mode-of-life explain lifespan variation in birds and mammals , 2014, Proceedings of the Royal Society B: Biological Sciences.

[22]  Emmanuel F. A. Toussaint,et al.  The towering orogeny of New Guinea as a trigger for arthropod megadiversity , 2014, Nature Communications.

[23]  L. Christidis,et al.  Relicts from Tertiary Australasia: undescribed families and subfamilies of songbirds (Passeriformes) and their zoogeographic signal. , 2014, Zootaxa.

[24]  T. Worthy,et al.  New specimens of the logrunner Orthonyx kaldowinyeri (Passeriformes: Orthonychidae) from the Oligo-Miocene of Australia , 2014 .

[25]  Dong Xie,et al.  BEAST 2: A Software Platform for Bayesian Evolutionary Analysis , 2014, PLoS Comput. Biol..

[26]  F. Lei,et al.  Discovery of a relict lineage and monotypic family of passerine birds , 2014, Biology Letters.

[27]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[28]  P. Ericson,et al.  Dating the diversification of the major lineages of Passeriformes (Aves) , 2014, BMC Evolutionary Biology.

[29]  Nicholas J. Matzke,et al.  BioGeography with Bayesian (and Likelihood) EvolutionaryAnalysis in R Scripts , 2014 .

[30]  Patrick M. O'Connor,et al.  Living Dinosaurs: The Evolutionary History of Modern Birds , 2014 .

[31]  Michael J. Landis,et al.  Bayesian analysis of biogeography when the number of areas is large. , 2013, Systematic biology.

[32]  G. Lister,et al.  A reassessment of paleogeographic reconstructions of eastern Gondwana: Bringing geology back into the equation , 2013 .

[33]  R. Hall The palaeogeography of Sundaland and Wallacea since the Late Jurassic , 2013 .

[34]  G. Mayr The age of the crown group of passerine birds and its evolutionary significance – molecular calibrations versus the fossil record , 2013 .

[35]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[36]  S. Reddy,et al.  The phylogenetic position of some Philippine "babblers" spans the muscicapoid and sylvioid bird radiations. , 2012, Molecular phylogenetics and evolution.

[37]  W. Jetz,et al.  The global diversity of birds in space and time , 2012, Nature.

[38]  R. Hall Late Jurassic–Cenozoic reconstructions of the Indonesian region and the Indian Ocean , 2012 .

[39]  Travis C Glenn,et al.  Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. , 2012, Systematic biology.

[40]  M. Haase,et al.  New insights into family relationships within the avian superfamily Sylvioidea (Passeriformes) based on seven molecular markers , 2012, BMC Evolutionary Biology.

[41]  R. Hall,et al.  Australian crust in Indonesia , 2012 .

[42]  M. Cloos,et al.  Collisional delamination in New Guinea: The geotectonics of subducting slab breakoff , 2012 .

[43]  T. Smith,et al.  Diversification in Adelomyia hummingbirds follows Andean uplift , 2011, Molecular ecology.

[44]  Christopher,et al.  Best Practices for Justifying Fossil Calibrations , 2011, Systematic biology.

[45]  J. Keogh,et al.  Decline of a biome: evolution, contraction, fragmentation, extinction and invasion of the Australian mesic zone biota , 2011 .

[46]  N. Friedman,et al.  Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2011, Nature Biotechnology.

[47]  F. K. Barker,et al.  Phylogeny and Diversification of Modern Passerines , 2011 .

[48]  P. Ericson,et al.  Multilocus analysis of a taxonomically densely sampled dataset reveal extensive non-monophyly in the avian family Locustellidae. , 2011, Molecular phylogenetics and evolution.

[49]  R. Ricklefs,et al.  Major global radiation of corvoid birds originated in the proto-Papuan archipelago , 2011, Proceedings of the National Academy of Sciences.

[50]  Scott V Edwards,et al.  A maximum pseudo-likelihood approach for estimating species trees under the coalescent model , 2010, BMC Evolutionary Biology.

[51]  Xingjin He,et al.  S-DIVA (Statistical Dispersal-Vicariance Analysis): A tool for inferring biogeographic histories. , 2010, Molecular phylogenetics and evolution.

[52]  L. Joseph,et al.  Phylogeny and evolution of the Meliphagoidea, the largest radiation of Australasian songbirds. , 2010, Molecular phylogenetics and evolution.

[53]  Liang Liu,et al.  Phybase: an R package for species tree analysis , 2010, Bioinform..

[54]  Aaron R. Quinlan,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2022 .

[55]  John R. Clark,et al.  A comparative study in ancestral range reconstruction methods: retracing the uncertain histories of insular lineages. , 2008, Systematic biology.

[56]  J. Fjeldså,et al.  Phylogenetic relationships within Passerida (Aves: Passeriformes): a review and a new molecular phylogeny based on three nuclear intron markers. , 2008, Molecular phylogenetics and evolution.

[57]  Tae-Kun Seo Calculating bootstrap probabilities of phylogeny using multilocus sequence data. , 2008, Molecular biology and evolution.

[58]  D. Schluter,et al.  Calibrating the avian molecular clock , 2008, Molecular ecology.

[59]  A. Manegold Passerine diversity in the late Oligocene of Germany: earliest evidence for the sympatric coexistence of Suboscines and Oscines , 2008 .

[60]  Richard H. Ree,et al.  Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. , 2008, Systematic biology.

[61]  Euan G. Ritchie,et al.  Evolution and Biogeography of Australasian Vertebrates , 2008 .

[62]  J. Cracraft,et al.  The assembly of montane biotas: linking Andean tectonics and climatic oscillations to independent regimes of diversification in Pionus parrots , 2007, Proceedings of the Royal Society B: Biological Sciences.

[63]  Ziheng Yang PAML 4: phylogenetic analysis by maximum likelihood. , 2007, Molecular biology and evolution.

[64]  K. Jønsson,et al.  Determining biogeographical patterns of dispersal and diversification in oscine passerine birds in Australia, Southeast Asia and Africa , 2006 .

[65]  J. Fjeldså,et al.  The African warbler genus Hyliota as a lost lineage in the Oscine songbird tree: molecular support for an African origin of the Passerida. , 2006, Molecular phylogenetics and evolution.

[66]  Urban Olsson,et al.  Phylogeny and classification of the avian superfamily Sylvioidea. , 2006, Molecular phylogenetics and evolution.

[67]  Campbell O. Webb,et al.  A LIKELIHOOD FRAMEWORK FOR INFERRING THE EVOLUTION OF GEOGRAPHIC RANGE ON PHYLOGENETIC TREES , 2005, Evolution; international journal of organic evolution.

[68]  Joel Cracraft,et al.  Phylogeny and diversification of the largest avian radiation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[69]  W. Spakman,et al.  Subducted slabs beneath the eastern Indonesia–Tonga region: insights from tomography , 2002 .

[70]  P. Ericson,et al.  A Gondwanan origin of passerine birds supported by DNA sequences of the endemic New Zealand wrens , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[71]  F. K. Barker,et al.  A phylogenetic hypothesis for passerine birds: taxonomic and biogeographic implications of an analysis of nuclear DNA sequence data , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[72]  J. Cracraft Avian evolution, Gondwana biogeography and the Cretaceous–Tertiary mass extinction event , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[73]  Wei Qian,et al.  Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. , 2000, Molecular biology and evolution.

[74]  Fredrik Ronquist,et al.  Dispersal-Vicariance Analysis: A New Approach to the Quantification of Historical Biogeography , 1997 .

[75]  L. Chiappe,et al.  An early Miocene passeriform from Argentina , 1993 .

[76]  D. Jarzen,et al.  The Antarctic/Australian rift valley: Late cretaceous cradle of nortteastern Australasian relicts? , 1990 .

[77]  D. Robinson,et al.  Comparison of phylogenetic trees , 1981 .

[78]  Ben G. Holt,et al.  A supermatrix phylogeny of corvoid passerine birds (Aves: Corvides). , 2016, Molecular phylogenetics and evolution.

[79]  P. Fabre,et al.  Resolving deep lineage divergences in core corvoid passerine birds supports a proto-Papuan island origin. , 2014, Molecular phylogenetics and evolution.

[80]  F. Keith Barker Mitogenomic data resolve basal relationships among passeriform and passeridan birds. , 2014, Molecular phylogenetics and evolution.

[81]  N. Matzke Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing , 2013 .

[82]  Satish Rao,et al.  Quartet MaxCut: a fast algorithm for amalgamating quartet trees. , 2012, Molecular phylogenetics and evolution.

[83]  M. Springer,et al.  Phylogenetic relationships of living and recently extinct bandicoots based on nuclear and mitochondrial DNA sequences. , 2012, Molecular phylogenetics and evolution.

[84]  Philip C J Donoghue,et al.  The impact of the representation of fossil calibrations on Bayesian estimation of species divergence times. , 2010, Systematic biology.

[85]  Michael Archer,et al.  Evolution and biogeography of Australasian vertebrates , 2006 .

[86]  M. Cloos,et al.  Cenozoic tectonics of New Guinea , 2005 .

[87]  I. Lovette MITOCHONDRIAL DATING AND MIXED SUPPORT FOR THE “2% RULE” IN BIRDS , 2004 .

[88]  R. Hall,et al.  Mesozoic-Cenozoic evolution of Australia's New Guinea margin in a west Pacific context , 2003 .

[89]  E C Dickinson,et al.  THE HOWARD AND MOORE COMPLETE CHECKLIST OF THE BIRDS OF THE WORLD. 4 th EDITION VOLUME 2 (2014) , 2003 .

[90]  J. Veevers,et al.  Billion-year Earth History of Australia and Neighbours in Gondwanaland , 2000 .

[91]  J. Brammall A new petauroid possum from the Oligo-Miocene of Riversleigh, northwestern Queensland , 1999 .

[92]  J. Holloway,et al.  Biogeography and geological evolution of se Asia , 1998 .