Measuring the Sterile Neutrino Mass in Spallation Source and Direct Detection Experiments

We explore the complementarity of direct detection (DD) and spallation source (SS) experiments for the study of sterile neutrino physics. We focus on the sterile baryonic neutrino model: an extension of the Standard Model that introduces a massive sterile neutrino with couplings to the quark sector via a new gauge boson. In this scenario, the inelastic scattering of an active neutrino with the target material in both DD and SS experiments gives rise to a characteristic nuclear recoil energy spectrum that can allow for the reconstruction of the neutrino mass in the event of a positive detection. We first derive new bounds on this model based on the data from the COHERENT collaboration on CsI and LAr targets, which we find do not yet probe new areas of the parameter space. We then assess how well future SS experiments will be able to measure the sterile neutrino mass and mixings, showing that masses in the range 15-50 MeV can be reconstructed. We show that there is a degeneracy in the measurement of the sterile neutrino mixing that substantially affects the reconstruction of parameters for masses of the order of 40 MeV. Thanks to their lower energy threshold and sensitivity to the solar tau neutrino flux, DD experiments allow us to partially lift the degeneracy in the sterile neutrino mixings and considerably improve its mass reconstruction down to 9 MeV. Our results demonstrate the excellent complementarity between DD and SS experiments in measuring the sterile neutrino mass and highlight the power of DD experiments in searching for new physics in the neutrino sector.

[1]  V. Romeri,et al.  COHERENT production of a dark fermion , 2023, Physical Review D.

[2]  P. Foldenauer,et al.  A direct detection view of the neutrino NSI landscape , 2023, Journal of High Energy Physics.

[3]  O. Miranda,et al.  Physics implications of a combined analysis of COHERENT CsI and LAr data , 2022, Journal of High Energy Physics.

[4]  V. C. Antochi,et al.  Search for New Physics in Electronic Recoil Data from XENONnT. , 2022, Physical review letters.

[5]  C. Argüelles,et al.  Efficiently exploring multidimensional parameter spaces beyond the Standard Model , 2022, Physical Review D.

[6]  M. Gonzalez-Garcia,et al.  Constraining new physics with Borexino Phase-II spectral data , 2022, Journal of High Energy Physics.

[7]  C. Argüelles,et al.  Snowmass white paper: beyond the standard model effects on neutrino flavor , 2022, The European Physical Journal C.

[8]  J. I. Crespo-Anadón,et al.  The present and future status of heavy neutral leptons , 2022, Journal of Physics G: Nuclear and Particle Physics.

[9]  P. Reimitz,et al.  A robust description of hadronic decays in light vector mediator models , 2022, Journal of High Energy Physics.

[10]  A. Gouvea,et al.  $pp$ Solar Neutrinos at DARWIN , 2021, 2111.02421.

[11]  A. Salyapongse,et al.  Measurement of the Coherent Elastic Neutrino-Nucleus Scattering Cross Section on CsI by COHERENT. , 2021, Physical review letters.

[12]  J. Harz,et al.  Probing Active-Sterile Neutrino Transition Magnetic Moments with Photon Emission from CE$\nu$NS , 2021, 2110.02233.

[13]  T. Schwetz,et al.  Testing sterile neutrino mixing with present and future solar neutrino data , 2021, The European Physical Journal C.

[14]  O. Miranda,et al.  Low-energy probes of sterile neutrino transition magnetic moments , 2021, Journal of High Energy Physics.

[15]  C. O’Hare New Definition of the Neutrino Floor for Direct Dark Matter Searches. , 2021, Physical review letters.

[16]  M. Ovchynnikov,et al.  When feebly interacting massive particles decay into neutrinos: The Neff story , 2021, Physical Review D.

[17]  D. V. Forero,et al.  Nonunitary neutrino mixing in short and long-baseline experiments , 2021, Physical Review D.

[18]  V. Takhistov,et al.  Exploring the origin of supermassive black holes with coherent neutrino scattering , 2021, Journal of Cosmology and Astroparticle Physics.

[19]  K. S. Hansen,et al.  First Measurement of Coherent Elastic Neutrino-Nucleus Scattering on Argon. , 2021, Physical review letters.

[20]  D. Papoulias COHERENT constraints after the COHERENT-2020 quenching factor measurement , 2020, Physical Review D.

[21]  P. Foldenauer,et al.  Flavor structure of anomaly-free hidden photon models , 2020, 2011.12973.

[22]  V. C. Antochi,et al.  Excess electronic recoil events in XENON1T , 2020, Physical Review D.

[23]  O. Miranda,et al.  Future CEvNS experiments as probes of lepton unitarity and light sterile neutrinos , 2020, Physical Review D.

[24]  V. Brdar,et al.  The neutrino magnetic moment portal: cosmology, astrophysics, and direct detection , 2020, Journal of Cosmology and Astroparticle Physics.

[25]  T. Schwetz,et al.  The fate of hints: updated global analysis of three-flavor neutrino oscillations , 2020, Journal of High Energy Physics.

[26]  V. C. Antochi,et al.  Projected WIMP sensitivity of the XENONnT dark matter experiment , 2020, Journal of Cosmology and Astroparticle Physics.

[27]  Yu-Dai Tsai,et al.  Active-to-sterile neutrino dipole portal and the XENON1T excess , 2020, Physical Review D.

[28]  Andrii Magalich,et al.  An extended analysis of Heavy Neutral Leptons during Big Bang Nucleosynthesis , 2020, Journal of Cosmology and Astroparticle Physics.

[29]  O. Miranda,et al.  Implications of the first detection of coherent elastic neutrino-nucleus scattering (CEvNS) with liquid Argon , 2020, 2003.12050.

[30]  S. Sinha,et al.  A global analysis strategy to resolve neutrino NSI degeneracies with scattering and oscillation data , 2020, Journal of High Energy Physics.

[31]  O. Miranda,et al.  Probing new neutral gauge bosons with CEνNS and neutrino-electron scattering , 2020, Physical Review D.

[32]  K. S. Hansen,et al.  Sensitivity of the COHERENT experiment to accelerator-produced dark matter , 2019, 1911.06422.

[33]  P. Privitera,et al.  Coherent elastic neutrino-nucleus scattering at the European Spallation Source , 2019, Journal of High Energy Physics.

[34]  Amir N. Khan,et al.  New physics from COHERENT data with an improved quenching factor , 2019, Physical Review D.

[35]  M. Aoki,et al.  Search for heavy neutrinos in π → μν decay , 2019, Physics Letters B.

[36]  M. Hartz,et al.  Search for heavy neutrinos with the T2K near detector ND280 , 2019, Physical Review D.

[37]  V. Takhistov,et al.  Geoneutrinos in large direct detection experiments , 2018, Physical Review D.

[38]  I. Shoemaker,et al.  Direct detection experiments at the neutrino dipole portal frontier , 2018, Physical Review D.

[39]  J. Beacom,et al.  DUNE as the Next-Generation Solar Neutrino Experiment. , 2018, Physical review letters.

[40]  Sourov Roy,et al.  Supersymmetric gauged U(1)Lμ−Lτ model for neutrinos and the muon ( g−2 ) anomaly , 2018, Physical Review D.

[41]  T. Schwetz,et al.  Updated global analysis of neutrino oscillations in the presence of eV-scale sterile neutrinos , 2018, Journal of High Energy Physics.

[42]  Martin Bauer,et al.  Hunting all the hidden photons , 2018, Journal of High Energy Physics.

[43]  V. Cerný,et al.  Search for heavy neutral lepton production in K+ decays , 2017, 1712.00297.

[44]  G. Kane,et al.  Coherent elastic neutrino nucleus scattering as a probe of aZ′through kinetic and mass mixing effects , 2018, Physical Review D.

[45]  J. P. Rodrigues,et al.  Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment , 2018, Physical Review D.

[46]  R. Essig,et al.  submitter : Solar Neutrinos as a Signal and Background in Direct-Detection Experiments Searching for Sub-GeV Dark Matter With Electron Recoils , 2018, 1801.10159.

[47]  B Viren,et al.  Search for Sterile Neutrinos in MINOS and MINOS+ Using a Two-Detector Fit. , 2017, Physical review letters.

[48]  S. Klein,et al.  Observation of coherent elastic neutrino-nucleus scattering , 2017, Science.

[49]  B. Dutta,et al.  Non-standard interactions of solar neutrinos in dark matter experiments , 2017, 1705.00661.

[50]  T. Schwetz,et al.  Curtailing the dark side in non-standard neutrino interactions , 2017, Journal of High Energy Physics.

[51]  J. Valle,et al.  Probing light sterile neutrino signatures at reactor and Spallation Neutron Source neutrino experiments , 2017, 1703.00054.

[52]  T. Schwetz,et al.  Curtailing the dark side in non-standard neutrino interactions , 2017, 1701.04828.

[53]  S. Basu,et al.  A New Generation of Standard Solar Models , 2016, 1611.09867.

[54]  F. V. Massoli,et al.  DARWIN: towards the ultimate dark matter detector , 2016, 1606.07001.

[55]  A. Vincent,et al.  Physics from solar neutrinos in dark matter direct detection experiments , 2016, 1604.01025.

[56]  C. -. Yu,et al.  The COHERENT Experiment at the Spallation Neutron Source , 2015, 1509.08702.

[57]  M. Lattanzi,et al.  Revisiting cosmological bounds on sterile neutrinos , 2014, 1408.1956.

[58]  A. Merloni,et al.  X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue , 2014, 1402.0004.

[59]  M. P. Hobson,et al.  Importance Nested Sampling and the MultiNest Algorithm , 2013, The Open Journal of Astrophysics.

[60]  G. Karagiorgi,et al.  Light Sterile Neutrinos: A White Paper , 2012, 1204.5379.

[61]  J. Pradler,et al.  Elastic scattering signals of solar neutrinos with enhanced baryonic currents , 2012, 1203.0545.

[62]  S. Elliott,et al.  Combined analysis of all three phases of solar neutrino data from the Sudbury Neutrino Observatory , 2011, 1109.0763.

[63]  M. Pospelov Neutrino Physics with Dark Matter Experiments and the Signature of New Baryonic Neutral Currents , 2011, 1103.3261.

[64]  K. Cranmer,et al.  Asymptotic formulae for likelihood-based tests of new physics , 2010, 1007.1727.

[65]  Michele Maltoni,et al.  Updated determination of the solar neutrino fluxes from solar neutrino data , 2010, 1601.00972.

[66]  F. Feroz,et al.  MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.

[67]  S. Basu,et al.  New Solar Opacities, Abundances, Helioseismology, and Neutrino Fluxes , 2004, astro-ph/0412440.

[68]  M. Gonzalez-Garcia,et al.  Atmospheric Neutrino Oscillations and New Physics , 2004, hep-ph/0404085.

[69]  P. C. Holanda,et al.  Status of a hybrid three-neutrino interpretation of neutrino data , 2001, hep-ph/0112310.

[70]  M. Guzzo,et al.  Massless ``just-so'' solution to the solar neutrino problem , 2000, hep-ph/0012089.

[71]  P. C. Holanda,et al.  Status of the solution to the solar neutrino problem based on nonstandard neutrino interactions , 2000, hep-ph/0004049.

[72]  E. al.,et al.  Search for neutral heavy leptons in a high-energy neutrino beam , 1999, hep-ex/9908011.

[73]  J. Valle,et al.  Atmospheric neutrino observations and flavor changing interactions , 1998, hep-ph/9809531.

[74]  E. Vallazza,et al.  Search for neutral heavy leptons produced in Z decays , 1997 .

[75]  J. D. Lewin,et al.  Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil , 1996 .

[76]  D. Britton,et al.  Improved search for massive neutrinos in π + →e + ν decay , 1992 .

[77]  S. Petcov,et al.  On the matter-enhanced transitions of solar neutrinos in the absence of neutrino mixing in vacuum , 1991 .

[78]  S. Petcov,et al.  On the MSW effect with massless neutrinos and no mixing in the vacuum , 1991 .

[79]  T. Kuo,et al.  Neutrino Oscillations in Matter , 1989 .

[80]  A. Baroncelli,et al.  A Search for Decays of Heavy Neutrinos in the Mass Range 0.5-{GeV} to 2.8-{GeV} , 1986 .

[81]  K. Hultqvist,et al.  Search for Heavy Neutrino Decays in the {BEBC} Beam Dump Experiment , 1985 .

[82]  L. Stodolsky,et al.  Principles and Applications of a Neutral Current Detector for Neutrino Physics and Astronomy , 1984 .

[83]  Richard H. Helm,et al.  Inelastic and Elastic Scattering of 187-Mev Electrons from Selected Even-Even Nuclei , 1956 .

[84]  P. Foldenauer,et al.  Confirming U ( 1 ) L μ − L τ as a solution for ( g − 2 ) μ with neutrinos , 2021 .

[85]  P. Foldenauer,et al.  Solar neutrino probes of the muon anomalous magnetic moment in the gauged U(1) L µ − L τ , 2020 .

[86]  A. Aurisano,et al.  Search for sterile neutrinos in MINOS and MINOS+ using a two-detector fit: Supplemental discussion , 2019 .