Decision Procedures for Theories of Sets with Measures

In this paper we introduce a decision procedure for checking satisfiability of quantifier-free formulae in the combined theory of sets, measures and arithmetic. Such theories are important in mathematics (e.g. probability theory and measure theory) and in applications. We indicate how these ideas can be used for obtaining a decision procedure for a fragment of the duration calculus.

[1]  Martin Fränzle,et al.  Deciding an Interval Logic with Accumulated Durations , 2007, TACAS.

[2]  C. A. R. Hoare,et al.  A Calculus of Durations , 1991, Inf. Process. Lett..

[3]  Swen Jacobs Incremental Instance Generation in Local Reasoning , 2009, CAV.

[4]  Michael R. Hansen,et al.  Duration Calculus: A Formal Approach to Real-Time Systems (Monographs in Theoretical Computer Science. an Eatcs Seris) , 2004 .

[5]  Carsten Ihlemann,et al.  Automated Reasoning in Some Local Extensions of Ordered Structures , 2007, 37th International Symposium on Multiple-Valued Logic (ISMVL'07).

[6]  Anders P. Ravn,et al.  An Extended Duration Calculus for Hybrid Real-Time Systems , 1992, Hybrid Systems.

[7]  Ruzica Piskac,et al.  Ordered Sets in the Calculus of Data Structures , 2010, CSL.

[8]  Elena Pagani,et al.  Counting Constraints in Flat Array Fragments , 2016, IJCAR.

[9]  Calogero G. Zarba,et al.  Combining Sets with Cardinals , 2005, Journal of Automated Reasoning.

[10]  Chaochen Zhou Linear Duration Invariants , 1994, FTRTFT.

[11]  Markus Bender Reasoning with Sets and Sums of Sets , 2016, SMT@IJCAR.

[12]  Nathalie Chetcuti-Sperandio,et al.  Tableau-Based Automated Deduction for Duration Calculus , 2002, TABLEAUX.

[13]  Carsten Ihlemann,et al.  On Hierarchical Reasoning in Combinations of Theories , 2010, IJCAR.

[14]  Luis Fariñas del Cerro,et al.  A Decision Method for Duration Calculus , 1999, J. Univers. Comput. Sci..

[15]  Viktor Kuncak,et al.  Deciding Boolean Algebra with Presburger Arithmetic , 2006, Journal of Automated Reasoning.

[16]  Christophe Ringeissen,et al.  A Gentle Non-disjoint Combination of Satisfiability Procedures , 2014, IJCAR.

[17]  Viktor Kuncak,et al.  An Algorithm for Deciding BAPA: Boolean Algebra with Presburger Arithmetic , 2005, CADE.

[18]  Hans Jürgen Ohlbach Set Description Languages and Reasoning about Numerical Features of Sets , 1999, Description Logics.

[19]  Ruzica Piskac,et al.  Combining Theories with Shared Set Operations , 2009, FroCoS.

[20]  Ruzica Piskac,et al.  Collections, Cardinalities, and Relations , 2010, VMCAI.

[21]  Ahmed Bouajjani,et al.  From Duration Calculus To Linear Hybrid Automata , 1995, CAV.

[22]  Luis Fariñas del Cerro,et al.  A mixed decision method for duration calculus , 2000, J. Log. Comput..

[23]  Michael R. Hansen,et al.  Decidability and Undecidability Results for Duration Calculus , 1993, STACS.

[24]  Viorica Sofronie-Stokkermans,et al.  Hierarchic Reasoning in Local Theory Extensions , 2005, CADE.

[25]  Viktor Kuncak,et al.  Full functional verification of linked data structures , 2008, PLDI '08.

[26]  L. Khachiyan Polynomial algorithms in linear programming , 1980 .

[27]  Cesare Tinelli,et al.  A New Decision Procedure for Finite Sets and Cardinality Constraints in SMT , 2016, IJCAR.