Intermolecular potential of carbon dioxide dimer from symmetry-adapted perturbation theory

A four-dimensional intermolecular potential energy surface for the carbon dioxide dimer has been computed using the many-body symmetry-adapted perturbation theory (SAPT) and a large 5s3p2d1f basis set including bond functions. The SAPT level applied is approximately equivalent to the supermolecular many-body perturbation theory at the second-order level. An accurate fit to the computed data has been obtained in a form of an angular expansion incorporating the asymptotic coefficients computed ab initio at the level consistent with the applied SAPT theory. A simpler site-site fit has also been developed to facilitate the use of the potential in molecular dynamics and Monte Carlo simulations. The quality of the new potential has been tested by computing the values of the second virial coefficient which agree very well with the experimental data over a wide range of temperatures. Our potential energy surface turns out to be substantially deeper than previous ab initio potentials. The minimum of −484 cm−1 has ...

[1]  B. Howard,et al.  On the structure of the carbon dioxide dimer , 1979 .

[2]  J. Faeder,et al.  Solvation of electronically excited I2 , 1994 .

[3]  Maciej Gutowski,et al.  Weak interactions between small systems. Models for studying the nature of intermolecular forces and challenging problems for ab initio calculations , 1988 .

[4]  P. Wormer,et al.  Ab initio studies of the interactions in Van der Waals molecules , 1980 .

[5]  K. Szalewicz,et al.  On the effectiveness of monomer‐, dimer‐, and bond‐centered basis functions in calculations of intermolecular interaction energies , 1995 .

[6]  M. Klein,et al.  Structure and dynamics of carbon dioxide clusters: a molecular dynamics study , 1989 .

[7]  O. Kitao,et al.  A New Potential Model for Carbon Dioxide from AB Initio Calculations , 1994 .

[8]  John S. Muenter,et al.  An intermolecular potential function model applied to acetylene dimer, carbon dioxide dimer, and carbon dioxide acetylene , 1991 .

[9]  H. Partridge Near Hartree–Fock quality GTO basis sets for the second‐row atoms , 1987 .

[10]  P. Wormer,et al.  Intermolecular potential and rovibrational levels of Ar-HF from symmetry-adapted perturbation theory , 1995 .

[11]  K. Szalewicz,et al.  Symmetry-adapted perturbation theory of potential-energy surfaces for weakly bound molecular complexes , 1994 .

[12]  G. T. Fraser,et al.  Structure and vibrational dynamics of the CO2 dimer from the sub‐Doppler infrared spectrum of the 2.7 μm Fermi diad , 1988 .

[13]  W. Miller,et al.  ON FINDING TRANSITION STATES , 1981 .

[14]  S. Kuwajima,et al.  Molecular dynamics simulation of supercritical carbon dioxide fluid with the model potential from ab initio molecular orbital calculations , 1996 .

[15]  Allan H. White,et al.  Rayleigh scattering depolarization ratio and molecular polarizability anisotropy for gases , 1978 .

[16]  H. B. Jansen,et al.  Non-empirical molecular orbital calculations on the protonation of carbon monoxide , 1969 .

[17]  Robert Moszynski,et al.  Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes , 1994 .

[18]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[19]  W. Keesom,et al.  New determination of the lattice constant of carbon dioxide , 1934 .

[20]  Robert Moszynski,et al.  A new He–CO interaction energy surface with vibrational coordinate dependence. I. Ab initio potential and infrared spectrum , 1997 .

[21]  V. Schettino,et al.  The structure of carbon dioxide dimers trapped in solid rare gas matrices , 1978 .

[22]  R. Ahlrichs Convergence properties of the intermolecular force series (1/R-expansion) , 1976 .

[23]  Stanisl,et al.  Many‐body perturbation theory of electrostatic interactions between molecules: Comparison with full configuration interaction for four‐electron dimers , 1993 .

[24]  D. E. Gray,et al.  American Institute of Physics Handbook , 1957 .

[25]  J. Fischer,et al.  Determination of an effective intermolecular potential for carbon dioxide using vapour-liquid phase equilibria from NpT + test particle simulations , 1994 .

[26]  Patrick W. Fowler,et al.  A model for the geometries of Van der Waals complexes , 1985 .

[27]  W. C. Lineberger,et al.  I−2 photodissociation and recombination dynamics in size‐selected I−2(CO2)n cluster ions , 1993 .

[28]  G. Ewing,et al.  Large CO2 clusters studied by infrared spectroscopy and light scattering , 1993 .

[29]  T. Heijmen,et al.  Symmetry-adapted perturbation theory applied to interaction-induced properties of collisional complexes , 1996 .

[30]  R. E. Leckenby,et al.  The observation of double molecules in gases , 1966, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[31]  David J. Nesbitt,et al.  Sublimation dynamics of CO2 thin films: A high resolution diode laser study of quantum state resolved sticking coefficients , 1996 .

[32]  N. Handy,et al.  Ab initio studies of internal rotation barriers and vibrational frequencies of (C2H2)2, (CO2)2, and C2H2-CO2 , 1990 .

[33]  M. Szczęśniak,et al.  Origins of Structure and Energetics of van der Waals Clusters from ab Initio Calculations , 1994 .

[34]  W. J. Lafferty,et al.  The structure of the carbon dioxide dimer from near infrared spectroscopy , 1987 .

[35]  P. Wormer,et al.  Many‐body perturbation theory of frequency‐dependent polarizabilities and van der Waals coefficients: Application to H2O–H2O and Ar–NH3 , 1992 .

[36]  B. Howard,et al.  Pulsed molecular beam infrared absorption spectroscopy of CO2 dimer , 1987 .

[37]  W. Müller,et al.  Messungen des zweiten Virialkoeffizienten von Gasen und Gasmischungen bei Zimmertemperatur mit einer Expansionsapparatur , 1982 .

[38]  G. A. Parker,et al.  van der Waals interactions of carbon monoxide , 1974 .

[39]  P. Schleyer Encyclopedia of computational chemistry , 1998 .

[40]  B. Kuchta,et al.  Static and dynamic properties of solid CO2 at various temperatures and pressures , 1989 .

[41]  Stanisl,et al.  Many‐body symmetry‐adapted perturbation theory of intermolecular interactions. H2O and HF dimers , 1991 .

[42]  K. Hirao,et al.  Stability and structure of cluster ions in the gas phase: Carbon dioxide with Cl−, H3O+, HCO+2, and HCO+ , 1986 .

[43]  Jean-Bernard Maillet,et al.  From molecular clusters to bulk matter. I. Structure and thermodynamics of small CO2, N2, and SF6 clusters , 1998 .

[44]  Jiří Čížek,et al.  Direct calculation of the Hartree–Fock interaction energy via exchange–perturbation expansion. The He … He interaction , 1987 .

[45]  S. J. Cole,et al.  A theoretical study of the water dimer interaction , 1988 .

[46]  Sl,et al.  Many‐body theory of intermolecular induction interactions , 1994 .

[47]  T. E. Gough,et al.  The infrared spectrum of clustered carbon dioxide: An interpretation via bulk optical constants , 1991 .

[48]  G. Steinebrunner,et al.  Ab initio calculation of the intermolecular potential energy surface of (CO2)2 and first applications in simulations of fluid CO2 , 1996 .

[49]  G. Graner,et al.  The carbon dioxide molecule , 1986 .

[50]  I. R. Mcdonald,et al.  Electrostatic interactions in molecular crystals , 1983 .

[51]  R. C. Hanson A new high-pressure phase of solid carbon dioxide , 1985 .

[52]  P. Wormer,et al.  Rovibrational spectra of Ar-H2 and Ar-D2 Van der Waals complexes from an ab initio SAPT potential , 1994 .

[53]  T. E. Gough,et al.  Infrared spectra and vibrational predissociation of carbon dioxide ((CO2)n) clusters using laser-molecular beam techniques , 1981 .

[54]  J. Whitten,et al.  The structure of the carbon dioxide dimer , 1977 .

[55]  J. Farges,et al.  Size effects in the structure and dynamics of CO2 clusters , 1984 .

[56]  M. Szczęśniak,et al.  Ab initio study of the H2CO–Ar complex , 1993 .

[57]  S. Odiot,et al.  A priori and empirical calculations of external vibration frequencies of the dimer of carbon dioxide , 1982 .

[58]  D. Nesbitt,et al.  Geometric isomerism in clusters: High resolution infrared spectroscopy of a noncyclic CO2 trimer , 1996 .

[59]  S. Scheiner Molecular Interactions. From van der Waals to Strongly Bound Complexes , 1997 .

[60]  J. Sommer,et al.  Die zweiten Virialkoeffizienten von Helium‐Gasmischungen im Bereich unterhalb Zimmertemperatur , 1986 .

[61]  Jeanette M. Sperhac,et al.  High‐resolution infrared diode laser spectroscopy of (CO2)3: Vibrationally averaged structures, resonant dipole vibrational shifts, and tests of CO2–CO2 pair potentials , 1995 .

[62]  R. Eggenberger,et al.  The carbon dioxide dimer , 1991 .

[63]  K. Tang,et al.  An improved simple model for the van der Waals potential based on universal damping functions for the dispersion coefficients , 1984 .

[64]  T. E. Gough,et al.  Fourier transform infrared spectroscopy of molecular clusters: The structure and internal mobility of clustered carbon dioxide , 1987 .

[65]  M. Szczęśniak,et al.  On the connection between the supermolecular Møller-Plesset treatment of the interaction energy and the perturbation theory of intermolecular forces , 1988 .

[66]  Kuchta,et al.  Prediction of a high-pressure phase transition and other properties of solid CO2 at low temperatures. , 1988, Physical review. B, Condensed matter.

[67]  P. Wormer,et al.  Near‐infrared spectrum and rotational predissociation dynamics of the He–HF complex from an ab initio symmetry‐adapted perturbation theory potential , 1994 .

[68]  M. Klobukowski,et al.  Well-tempered gaussian basis set expansions of Roothaan-Hartree-Fock atomic wavefunctions for lithium through mercury , 1988 .

[69]  K. Szalewicz,et al.  Effects of monomer geometry and basis set saturation on computed depth of water dimer potential , 1996 .

[70]  G. T. Fraser,et al.  Sub‐Doppler infrared spectrum of the carbon dioxide trimer , 1987 .

[71]  Anthony J. Stone,et al.  Distributed multipole analysis, or how to describe a molecular charge distribution , 1981 .

[72]  B. Nelander,et al.  On the dimerization of carbon dioxide in nitrogen and argon matrices , 1974 .

[73]  H. L. Welsh,et al.  An infrared spectrum of CO2 dimers in the , 1971 .

[74]  P. Maslen,et al.  Recombination and relaxation of molecular ions in size‐selected clusters: Monte Carlo and molecular dynamics simulations of I−2 (CO2)n , 1995 .

[75]  J. LoBue,et al.  Qualitative structure of (CO2)2 and (OCS)2 , 1984 .

[76]  Ian R. McDonald,et al.  Interaction site models for carbon dioxide , 1981 .

[77]  Cai,et al.  Polarizability of CO2 studied in molecular-beam laser Stark spectroscopy. , 1987, Physical review. A, General physics.

[78]  M. Maroncelli,et al.  Cars spectra of van der waals complexes: The structure of the CO2 dimer , 1985 .

[79]  K. Kobashi,et al.  Molecular librations of solid CO2 under high pressure based on Kihara core potentials , 1980 .

[80]  G. Ritchie,et al.  Temperature dependence of electric field-gradient induced birefringence in carbon dioxide and carbon disulfide , 1997 .

[81]  R. Eggenberger,et al.  Basis Set Superposition Errors in Intermolecular Structures and Force-Constants , 1991 .

[82]  Aoki,et al.  Phase study of solid CO2 to 20 GPa by infrared-absorption spectroscopy. , 1993, Physical review. B, Condensed matter.