Positive embedded integration in Bayesian analysis
暂无分享,去创建一个
[1] J. Naylor,et al. A Contamination Model in Clinical Chemistry: An Illustration of a Method for the Efficient Computation of Posterior Distributions , 1983 .
[2] J. N. Lyness,et al. On the Structure of Fully Symmetric Multidimensional Quadrature Rules , 1979 .
[3] Giovanni Monegato,et al. Some remarks on the construction of extended Gaussian quadrature rules , 1978 .
[4] Andrew P. Grieve,et al. Applications of Bayesian software: two examples , 1987 .
[5] J. Naylor,et al. Applications of a Method for the Efficient Computation of Posterior Distributions , 1982 .
[6] Terje O. Espelid,et al. On the use of Gauss quadrature in adaptive automatic integration schemes , 1984 .
[7] Richard L. Smith,et al. A Comparison of Maximum Likelihood and Bayesian Estimators for the Three‐Parameter Weibull Distribution , 1987 .
[8] J. E. H. Shaw,et al. A Quasirandom Approach to Integration in Bayesian Statistics , 1988 .
[9] Alfred Houle. The Genealogical Tree of Bayesians , 1983 .
[10] Philip Rabinowitz,et al. The Application of Integer Programming to the Computation of Fully Symmetric Integration Formulas in Two and Three Dimensions , 1977 .
[11] T. Patterson. On some Gauss and Lobatto based integration formulae. , 1968 .
[12] J. C. Naylor,et al. Econometric illustrations of novel numerical integration strategies for Bayesian inference , 1988 .
[13] Petros Dellaportas. Imbedded integration rules and their applications in Bayesian analysis , 1990 .
[14] Philip Rabinowitz,et al. Methods of Numerical Integration , 1985 .
[15] A. Stroud. Approximate calculation of multiple integrals , 1973 .
[16] T. Patterson,et al. The optimum addition of points to quadrature formulae. , 1968 .
[17] J. McNamee,et al. Construction of fully symmetric numerical integration formulas of fully symmetric numerical integration formulas , 1967 .
[18] J. N. Lyness. Symmetric integration rules for hypercubes. I. Error coefficients , 1965 .
[19] J. Butcher,et al. On Sequences of Imbedded Integration Rules , 1987 .
[20] J. E. H. Shaw,et al. The implementation of the bayesian paradigm , 1985 .
[21] Philip Rabinowitz,et al. Perfectly symmetric two-dimensional integration formulas with minimal numbers of points , 1969 .
[22] A. F. M. Smith,et al. An Archaeological Inference Problem , 1988 .
[23] Robert Piessens. Algorithm for automatic integration , 1973 .
[24] R. Piessens,et al. A note on the optimal addition of abscissas to quadrature formulas of Gauss and Lobatto type , 1974 .
[25] Dirk Laurie,et al. Practical error estimation in numerical integration , 1985 .
[26] J. C. Naylor. Bayesian Alternatives to T‐Tests , 1987 .
[27] Thomas N. L. Patterson,et al. Algorithm 468: algorithm for automatic numerical integration over a finite interval [D1] , 1973, CACM.
[28] Alan Genz,et al. Fully symmetric interpolatory rules for multiple integrals , 1986 .
[29] A. F. M. Smith,et al. Progress with numerical and graphical methods for practical Bayesian statistics , 1987 .