A Fornberg-like conformal mapping method for slender regions
暂无分享,去创建一个
[1] Keith O. Geddes. Near-Minimax Polynomial Approximation in an Elliptical Region , 1978 .
[2] Charles Zemach. A conformal map formula for difficult cases , 1986 .
[3] R. Wegmann. Ein Iterationsverfahren zur konformen Abbildung , 1978 .
[4] Rudolf Wegman. On Fornberg's numerical method for conformal mapping , 1986 .
[5] R. Wegmann. Discretized versions of Newton type iterative methods for conformal mapping , 1990 .
[6] A. Elcrat,et al. Constant vorticity Riabouchinsky flows from a variational principle , 1990 .
[7] THOMAS K. DELILLO,et al. A Comparison of some Numerical Conformal Mapping Methods for Exterior Regions , 1991, SIAM J. Sci. Comput..
[8] Lloyd N. Trefethen,et al. A Modified Schwarz-Christoffel Transformation for Elongated Regions , 1990, SIAM J. Sci. Comput..
[9] Rudolf Wegmann,et al. An iterative method in conformal mapping , 1986 .
[10] Åke Björck,et al. Numerical Methods , 2021, Markov Renewal and Piecewise Deterministic Processes.
[11] B. Fornberg. A Numerical Method for Conformal Mappings , 1980 .
[12] Thomas K. DeLillo,et al. The accuracy of numerical conformal mapping methods: a survey of examples and results , 1994 .
[13] Convergence proofs and error estimates for an iterative method for conformal mapping , 1984 .
[14] W. C. Royster. A Poisson integral formula for the ellipse and some applications , 1964 .
[15] Dieter Gaier,et al. Konstruktive Methoden der konformen Abbildung , 1964 .