Compressive Parameter Estimation for Sparse Translation-Invariant Signals Using Polar Interpolation

We propose new compressive parameter estimation algorithms that make use of polar interpolation to improve the estimator precision. Our work extends previous approaches involving polar interpolation for compressive parameter estimation in two aspects: (i) we extend the formulation from real non-negative amplitude parameters to arbitrary complex ones, and (ii) we allow for mismatch between the manifold described by the parameters and its polar approximation. To quantify the improvements afforded by the proposed extensions, we evaluate six algorithms for estimation of parameters in sparse translation-invariant signals, exemplified with the time delay estimation problem. The evaluation is based on three performance metrics: estimator precision, sampling rate and computational complexity. We use compressive sensing with all the algorithms to lower the necessary sampling rate and show that it is still possible to attain good estimation precision and keep the computational complexity low. Our numerical experiments show that the proposed algorithms outperform existing approaches that either leverage polynomial interpolation or are based on a conversion to a frequency-estimation problem followed by a super-resolution algorithm. The algorithms studied here provide various tradeoffs between computational complexity, estimation precision, and necessary sampling rate. The work shows that compressive sensing for the class of sparse translation-invariant signals allows for a decrease in sampling rate and that the use of polar interpolation increases the estimation precision.

[1]  Eero P. Simoncelli,et al.  Recovery of Sparse Translation-Invariant Signals With Continuous Basis Pursuit , 2011, IEEE Transactions on Signal Processing.

[2]  Richard G. Baraniuk,et al.  DYNAMIC RANGE AND COMPRESSIVE SENSING ACQUISITION RECEIVERS , 2011 .

[3]  E. Candès,et al.  Sparsity and incoherence in compressive sampling , 2006, math/0611957.

[4]  Dorel Aiordachioaie,et al.  On time delay estimation by evaluation of three time domain functions , 2010, 2010 3rd International Symposium on Electrical and Electronics Engineering (ISEEE).

[5]  Pierre Vandergheynst,et al.  Compressed Sensing and Redundant Dictionaries , 2007, IEEE Transactions on Information Theory.

[6]  Yuxin Chen,et al.  Robust Spectral Compressed Sensing via Structured Matrix Completion , 2013, IEEE Transactions on Information Theory.

[7]  Marco F. Duarte,et al.  Spectral compressive sensing with polar interpolation , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[8]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[9]  Emmanuel J. Candès,et al.  Towards a Mathematical Theory of Super‐resolution , 2012, ArXiv.

[10]  Yide Wang,et al.  Modified ESPRIT (M-ESPRIT) algorithm for time delay estimation in both any noise and any radar pulse context by a GPR radar , 2010, Signal Process..

[11]  Gaetano Scarano,et al.  Discrete time techniques for time delay estimation , 1993, IEEE Trans. Signal Process..

[12]  M. Vetterli,et al.  Sparse Sampling of Signal Innovations , 2008, IEEE Signal Processing Magazine.

[13]  Jian Li,et al.  An efficient algorithm for time delay estimation , 1998, IEEE Trans. Signal Process..

[14]  Wenjing Liao,et al.  Coherence Pattern-Guided Compressive Sensing with Unresolved Grids , 2011, SIAM J. Imaging Sci..

[15]  Marco F. Duarte Localization and bearing estimation via structured sparsity models , 2012, 2012 IEEE Statistical Signal Processing Workshop (SSP).

[16]  Laurent Jacques,et al.  A Geometrical Study of Matching Pursuit Parametrization , 2008, IEEE Transactions on Signal Processing.

[17]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[18]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[19]  Justin K. Romberg,et al.  Beyond Nyquist: Efficient Sampling of Sparse Bandlimited Signals , 2009, IEEE Transactions on Information Theory.

[20]  Olgica Milenkovic,et al.  Subspace Pursuit for Compressive Sensing Signal Reconstruction , 2008, IEEE Transactions on Information Theory.

[21]  Thierry Blu,et al.  Sampling signals with finite rate of innovation , 2002, IEEE Trans. Signal Process..

[22]  Torben Larsen,et al.  Compressive Sensing for Spread Spectrum Receivers , 2013, IEEE Transactions on Wireless Communications.

[23]  Thomas Strohmer,et al.  High-Resolution Radar via Compressed Sensing , 2008, IEEE Transactions on Signal Processing.

[24]  Yonina C. Eldar,et al.  Noise Folding in Compressed Sensing , 2011, IEEE Signal Processing Letters.

[25]  J. Hassab,et al.  Analysis of discrete implementation of generalized cross correlator , 1981 .

[26]  Søren Holdt Jensen,et al.  On compressed sensing and the estimation of continuous parameters from noisy observations , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[27]  Prasant Misra,et al.  SparseGPS: energy efficient GPS acquisition via sparse approximation , 2013, SenSys '13.

[28]  Marco F. Duarte,et al.  Spectral compressive sensing , 2013 .

[29]  W.F. Walker,et al.  A spline-based algorithm for continuous time-delay estimation using sampled data , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[30]  Yonina C. Eldar,et al.  Time-Delay Estimation From Low-Rate Samples: A Union of Subspaces Approach , 2009, IEEE Transactions on Signal Processing.

[31]  Harri Saarnisaari,et al.  TLS-ESPRIT in a time delay estimation , 1997, 1997 IEEE 47th Vehicular Technology Conference. Technology in Motion.

[32]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[33]  Upamanyu Madhow,et al.  Compressive Parameter Estimation in AWGN , 2014, IEEE Transactions on Signal Processing.

[34]  Michael Elad,et al.  Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Jelena Kovacevic,et al.  Reproducible research in signal processing , 2009, IEEE Signal Process. Mag..

[36]  Parikshit Shah,et al.  Compressed Sensing Off the Grid , 2012, IEEE Transactions on Information Theory.

[37]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[38]  Volkan Cevher,et al.  What’s the Frequency, Kenneth?: Sublinear Fourier Sampling Off the Grid , 2015, Algorithmica.