Spanning Trees in Dense Graphs
暂无分享,去创建一个
János Komlós | Endre Szemerédi | Gábor N. Sárközy | E. Szemerédi | J. Komlos | G. Sárközy | G. N. Sárközy
[1] János Komlós,et al. On the square of a Hamiltonian cycle in dense graphs , 1996, Random Struct. Algorithms.
[2] L. Lovász. Combinatorial problems and exercises , 1979 .
[3] E. Szemerédi. Regular Partitions of Graphs , 1975 .
[4] Béla Bollobás,et al. Packings of graphs and applications to computational complexity , 1978, J. Comb. Theory, Ser. B.
[5] Vojtech Rödl,et al. The Algorithmic Aspects of the Regularity Lemma , 1994, J. Algorithms.
[6] Joel H. Spencer,et al. Edge disjoint placement of graphs , 1978, J. Comb. Theory B.
[7] E. Szemerédi. On sets of integers containing k elements in arithmetic progression , 1975 .
[8] János Komlós,et al. Blow-up Lemma , 1997, Combinatorics, Probability and Computing.
[9] János Komlós,et al. Proof of the Alon-Yuster conjecture , 2001, Discret. Math..
[10] Y. Kohayakawa. Szemerédi's regularity lemma for sparse graphs , 1997 .
[11] Miklós Simonovits,et al. Szemerédi's Partition and Quasirandomness , 1991, Random Struct. Algorithms.
[12] C. V. Eynden,et al. A proof of a conjecture of Erdös , 1969 .
[13] János Komlós,et al. Proof of a Packing Conjecture of Bollobás , 1995, Combinatorics, Probability and Computing.
[14] Endre Szemerédi,et al. Proof of the Seymour conjecture for large graphs , 1998 .
[15] János Komlós,et al. An algorithmic version of the blow-up lemma , 1998, Random Struct. Algorithms.