MATS: Inference for potentially singular and heteroscedastic MANOVA

In many experiments in the life sciences, several endpoints are recorded per subject. The analysis of such multivariate data is usually based on MANOVA models assuming multivariate normality and covariance homogeneity. These assumptions, however, are often not met in practice. Furthermore, test statistics should be invariant under scale transformations of the data, since the endpoints may be measured on different scales. In the context of high-dimensional data, Srivastava and Kubokawa (2013) proposed such a test statistic for a specific one-way model, which, however, relies on the assumption of a common non-singular covariance matrix. We modify and extend this test statistic to factorial MANOVA designs, incorporating general heteroscedastic models. In particular, our only distributional assumption is the existence of the group-wise covariance matrices, which may even be singular. We base inference on quantiles of resampling distributions, and derive confidence regions and ellipsoids based on these quantiles. In a simulation study, we extensively analyze the behavior of these procedures. Finally, the methods are applied to a data set containing information on the 2016 presidential elections in the USA with unequal and singular empirical covariance matrices.

[1]  K. Pillai Some New Test Criteria in Multivariate Analysis , 1955 .

[2]  Edgar Brunner,et al.  Analysis of high-dimensional one group repeated measures designs , 2015 .

[3]  Guillermo Vallejo,et al.  Robust tests for multivariate factorial designs under heteroscedasticity , 2011, Behavior Research Methods.

[4]  S. S. Wilks Sample Criteria for Testing Equality of Means, Equality of Variances, and Equality of Covariances in a Normal Multivariate Distribution , 1946 .

[5]  Luigi Salmaso,et al.  A review and some new results on permutation testing for multivariate problems , 2012, Stat. Comput..

[6]  Luigi Salmaso,et al.  Permutation Tests for Complex Data , 2010 .

[7]  Solomon W. Harrar,et al.  Parametric and nonparametric bootstrap methods for general MANOVA , 2015, J. Multivar. Anal..

[8]  Solomon W. Harrar,et al.  A modified two-factor multivariate analysis of variance: asymptotics and small sample approximations , 2012 .

[9]  A. Dempster A significance test for the separation of two highly multivariate small samples , 1960 .

[10]  Douglas L. Miller,et al.  A Practitioner’s Guide to Cluster-Robust Inference , 2015, The Journal of Human Resources.

[11]  Joseph P. Romano,et al.  Multivariate and multiple permutation tests , 2016 .

[12]  Changbao Wu,et al.  Jackknife, Bootstrap and Other Resampling Methods in Regression Analysis , 1986 .

[13]  Tatsuya Kubokawa,et al.  Tests for multivariate analysis of variance in high dimension under non-normality , 2013, J. Multivar. Anal..

[14]  E. Mammen When Does Bootstrap Work?: Asymptotic Results and Simulations , 1992 .

[15]  Edgar Brunner,et al.  Permuting longitudinal data in spite of the dependencies , 2017, J. Multivar. Anal..

[16]  Regina Y. Liu Bootstrap Procedures under some Non-I.I.D. Models , 1988 .

[17]  S. Csörgo On the law of large numbers for the bootstrap mean , 1992 .

[18]  Edgar Brunner,et al.  Rank-Score Tests in Factorial Designs with Repeated Measures , 1999 .

[19]  T. Hothorn,et al.  Simultaneous Inference in General Parametric Models , 2008, Biometrical journal. Biometrische Zeitschrift.

[20]  L. Salmaso,et al.  Permutation tests for complex data : theory, applications and software , 2010 .

[21]  K. S. Banerjee Generalized Inverse of Matrices and Its Applications , 1973 .

[22]  C. R. Rao,et al.  Generalized Inverse of Matrices and its Applications , 1972 .

[23]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[24]  Lukasz Smaga,et al.  Bootstrap methods for multivariate hypothesis testing , 2017, Commun. Stat. Simul. Comput..

[25]  Gert Willems,et al.  Robust and Efficient One-Way MANOVA Tests , 2011 .

[26]  Ludwig A Hothorn,et al.  Multiple Contrast Tests in the Presence of Heteroscedasticity , 2008, Biometrical journal. Biometrische Zeitschrift.

[27]  K. Gabriel,et al.  On closed testing procedures with special reference to ordered analysis of variance , 1976 .

[28]  Stefan Van Aelst,et al.  Fast and robust bootstrap for multivariate inference: The R package FRB , 2013 .

[29]  Pablo Livacic-Rojas,et al.  Analysis of unbalanced factorial designs with heteroscedastic data , 2010 .

[30]  Solomon W. Harrar,et al.  How to compare small multivariate samples using nonparametric tests , 2008, Comput. Stat. Data Anal..

[31]  Richard A. Johnson,et al.  Applied Multivariate Statistical Analysis , 1983 .

[32]  Markus Pauly,et al.  Weak Convergence of the Wild Bootstrap for the Aalen–Johansen Estimator of the Cumulative Incidence Function of a Competing Risk , 2013 .

[33]  D. Freedman,et al.  Some Asymptotic Theory for the Bootstrap , 1981 .

[34]  A. Dempster A HIGH DIMENSIONAL TWO SAMPLE SIGNIFICANCE TEST , 1958 .

[35]  Edgar Brunner,et al.  Nonparametric methods in factorial designs , 2001 .

[36]  D. Lin,et al.  Non-parametric inference for cumulative incidence functions in competing risks studies. , 1997, Statistics in medicine.

[37]  Solomon W. Harrar,et al.  A nonparametric version of Wilks' lambda--Asymptotic results and small sample approximations , 2011 .

[38]  K. Krishnamoorthy,et al.  A parametric bootstrap solution to the MANOVA under heteroscedasticity , 2010 .

[39]  Frank Konietschke,et al.  A wild bootstrap approach for nonparametric repeated measurements , 2017, Comput. Stat. Data Anal..

[40]  Shuang Qin,et al.  A parametric bootstrap approach for two-way ANOVA in presence of possible interactions with unequal variances , 2013, J. Multivar. Anal..

[41]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[42]  M. Bartlett A note on tests of significance in multivariate analysis , 1939, Mathematical Proceedings of the Cambridge Philosophical Society.

[43]  D. Lawley A GENERALIZATION OF FISHER'S z TEST , 1938 .

[44]  Emmanuel Flachaire,et al.  The wild bootstrap, tamed at last , 2001 .

[45]  H. Hotelling A Generalized T Test and Measure of Multivariate Dispersion , 1951 .

[46]  Eckart Sonnemann,et al.  General Solutions to Multiple Testing Problems , 2008, Biometrical journal. Biometrische Zeitschrift.