MATS: Inference for potentially singular and heteroscedastic MANOVA
暂无分享,去创建一个
[1] K. Pillai. Some New Test Criteria in Multivariate Analysis , 1955 .
[2] Edgar Brunner,et al. Analysis of high-dimensional one group repeated measures designs , 2015 .
[3] Guillermo Vallejo,et al. Robust tests for multivariate factorial designs under heteroscedasticity , 2011, Behavior Research Methods.
[4] S. S. Wilks. Sample Criteria for Testing Equality of Means, Equality of Variances, and Equality of Covariances in a Normal Multivariate Distribution , 1946 .
[5] Luigi Salmaso,et al. A review and some new results on permutation testing for multivariate problems , 2012, Stat. Comput..
[6] Luigi Salmaso,et al. Permutation Tests for Complex Data , 2010 .
[7] Solomon W. Harrar,et al. Parametric and nonparametric bootstrap methods for general MANOVA , 2015, J. Multivar. Anal..
[8] Solomon W. Harrar,et al. A modified two-factor multivariate analysis of variance: asymptotics and small sample approximations , 2012 .
[9] A. Dempster. A significance test for the separation of two highly multivariate small samples , 1960 .
[10] Douglas L. Miller,et al. A Practitioner’s Guide to Cluster-Robust Inference , 2015, The Journal of Human Resources.
[11] Joseph P. Romano,et al. Multivariate and multiple permutation tests , 2016 .
[12] Changbao Wu,et al. Jackknife, Bootstrap and Other Resampling Methods in Regression Analysis , 1986 .
[13] Tatsuya Kubokawa,et al. Tests for multivariate analysis of variance in high dimension under non-normality , 2013, J. Multivar. Anal..
[14] E. Mammen. When Does Bootstrap Work?: Asymptotic Results and Simulations , 1992 .
[15] Edgar Brunner,et al. Permuting longitudinal data in spite of the dependencies , 2017, J. Multivar. Anal..
[16] Regina Y. Liu. Bootstrap Procedures under some Non-I.I.D. Models , 1988 .
[17] S. Csörgo. On the law of large numbers for the bootstrap mean , 1992 .
[18] Edgar Brunner,et al. Rank-Score Tests in Factorial Designs with Repeated Measures , 1999 .
[19] T. Hothorn,et al. Simultaneous Inference in General Parametric Models , 2008, Biometrical journal. Biometrische Zeitschrift.
[20] L. Salmaso,et al. Permutation tests for complex data : theory, applications and software , 2010 .
[21] K. S. Banerjee. Generalized Inverse of Matrices and Its Applications , 1973 .
[22] C. R. Rao,et al. Generalized Inverse of Matrices and its Applications , 1972 .
[23] P. Cochat,et al. Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.
[24] Lukasz Smaga,et al. Bootstrap methods for multivariate hypothesis testing , 2017, Commun. Stat. Simul. Comput..
[25] Gert Willems,et al. Robust and Efficient One-Way MANOVA Tests , 2011 .
[26] Ludwig A Hothorn,et al. Multiple Contrast Tests in the Presence of Heteroscedasticity , 2008, Biometrical journal. Biometrische Zeitschrift.
[27] K. Gabriel,et al. On closed testing procedures with special reference to ordered analysis of variance , 1976 .
[28] Stefan Van Aelst,et al. Fast and robust bootstrap for multivariate inference: The R package FRB , 2013 .
[29] Pablo Livacic-Rojas,et al. Analysis of unbalanced factorial designs with heteroscedastic data , 2010 .
[30] Solomon W. Harrar,et al. How to compare small multivariate samples using nonparametric tests , 2008, Comput. Stat. Data Anal..
[31] Richard A. Johnson,et al. Applied Multivariate Statistical Analysis , 1983 .
[32] Markus Pauly,et al. Weak Convergence of the Wild Bootstrap for the Aalen–Johansen Estimator of the Cumulative Incidence Function of a Competing Risk , 2013 .
[33] D. Freedman,et al. Some Asymptotic Theory for the Bootstrap , 1981 .
[34] A. Dempster. A HIGH DIMENSIONAL TWO SAMPLE SIGNIFICANCE TEST , 1958 .
[35] Edgar Brunner,et al. Nonparametric methods in factorial designs , 2001 .
[36] D. Lin,et al. Non-parametric inference for cumulative incidence functions in competing risks studies. , 1997, Statistics in medicine.
[37] Solomon W. Harrar,et al. A nonparametric version of Wilks' lambda--Asymptotic results and small sample approximations , 2011 .
[38] K. Krishnamoorthy,et al. A parametric bootstrap solution to the MANOVA under heteroscedasticity , 2010 .
[39] Frank Konietschke,et al. A wild bootstrap approach for nonparametric repeated measurements , 2017, Comput. Stat. Data Anal..
[40] Shuang Qin,et al. A parametric bootstrap approach for two-way ANOVA in presence of possible interactions with unequal variances , 2013, J. Multivar. Anal..
[41] R Core Team,et al. R: A language and environment for statistical computing. , 2014 .
[42] M. Bartlett. A note on tests of significance in multivariate analysis , 1939, Mathematical Proceedings of the Cambridge Philosophical Society.
[43] D. Lawley. A GENERALIZATION OF FISHER'S z TEST , 1938 .
[44] Emmanuel Flachaire,et al. The wild bootstrap, tamed at last , 2001 .
[45] H. Hotelling. A Generalized T Test and Measure of Multivariate Dispersion , 1951 .
[46] Eckart Sonnemann,et al. General Solutions to Multiple Testing Problems , 2008, Biometrical journal. Biometrische Zeitschrift.