Encapsulated Annealing: Enhancing the Plasmon Quality Factor in Lithographically–Defined Nanostructures

Lithography provides the precision to pattern large arrays of metallic nanostructures with varying geometries, enabling systematic studies and discoveries of new phenomena in plasmonics. However, surface plasmon resonances experience more damping in lithographically–defined structures than in chemically–synthesized nanoparticles of comparable geometries. Grain boundaries, surface roughness, substrate effects, and adhesion layers have been reported as causes of plasmon damping, but it is difficult to isolate these effects. Using monochromated electron energy–loss spectroscopy (EELS) and numerical analysis, we demonstrate an experimental technique that allows the study of these effects individually, to significantly reduce the plasmon damping in lithographically–defined structures. We introduce a method of encapsulated annealing that preserves the shape of polycrystalline gold nanostructures, while their grain-boundary density is reduced. We demonstrate enhanced Q–factors in lithographically–defined nanostructures, with intrinsic damping that matches the theoretical Drude damping limit.

[1]  Jinghua Teng,et al.  Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer. , 2010, ACS nano.

[2]  Lin Wu,et al.  Quantum Plasmon Resonances Controlled by Molecular Tunnel Junctions , 2014, Science.

[3]  E. D. Palik Handbook of optical constants (A) , 1984 .

[4]  A. Vaskevich,et al.  Mechanism of morphology transformation during annealing of nanostructured gold films on glass. , 2013, Physical chemistry chemical physics : PCCP.

[5]  Stefan A. Maier,et al.  High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures. , 2011, Nano letters.

[6]  Odile Stéphan,et al.  Mapping plasmons at the nanometer scale in an electron microscope. , 2014, Chemical Society reviews.

[7]  Joel K. W. Yang,et al.  Sub-10 nm patterning of gold nanostructures on silicon-nitride membranes for plasmon mapping with electron energy-loss spectroscopy , 2010 .

[8]  M. Bosman,et al.  Optimizing EELS acquisition. , 2008, Ultramicroscopy.

[9]  F. J. Humphreys Chapter 12 – Recrystallization Textures , 2004 .

[10]  Huigao Duan,et al.  Printing colour at the optical diffraction limit. , 2012, Nature nanotechnology.

[11]  Vladimir M. Shalaev,et al.  Plasmonic nanoantenna arrays for the visible , 2008 .

[12]  Blueshift of surface plasmon resonance spectra in anneal-treated silver nanoslit arrays , 2005 .

[13]  Gianluigi A. Botton,et al.  Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe. , 2011, Nano letters.

[14]  Sang‐Hyun Oh,et al.  Ultrasmooth Patterned Metals for Plasmonics and Metamaterials , 2009, Science.

[15]  J. J. Olivero,et al.  Empirical fits to the Voigt line width: A brief review , 1977 .

[16]  Photoluminescence via gap plasmons between single silver nanowires and a thin gold film. , 2013, Nanoscale.

[17]  M. Toimil-Molares,et al.  Influence of crystallinity on the Rayleigh instability of gold nanowires , 2007 .

[18]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[19]  C T Koch,et al.  Direct imaging of surface plasmon resonances on single triangular silver nanoprisms at optical wavelength using low-loss EFTEM imaging. , 2009, Optics letters.

[20]  Zexiang Shen,et al.  Direct and reliable patterning of plasmonic nanostructures with sub-10-nm gaps. , 2011, ACS nano.

[21]  Zexiang Shen,et al.  Free-standing sub-10 nm nanostencils for the definition of gaps in plasmonic antennas , 2013, Nanotechnology.

[22]  J. Hörandel,et al.  COSMIC RAYS FROM THE KNEE TO THE SECOND , 2007 .

[23]  Kuo-Ping Chen,et al.  Drude relaxation rate in grained gold nanoantennas. , 2010, Nano letters.

[24]  C. Chan,et al.  Rational design of high performance surface plasmon resonance sensors based on two-dimensional metallic hole arrays. , 2012, Optics express.

[25]  M. Weyland,et al.  Three-dimensional morphology and crystallography of gold nanorods. , 2011, Nano letters.

[26]  Catherine J. Murphy,et al.  Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods , 2001 .

[27]  A. Hohenau,et al.  Universal dispersion of surface plasmons in flat nanostructures , 2014, Nature Communications.

[28]  Masashi Watanabe,et al.  Mapping surface plasmons at the nanometre scale with an electron beam , 2007 .

[29]  Alex A. Volinsky,et al.  Effects of diffusion on interfacial fracture of gold-chromium hybrid microcircuit films , 2003 .

[30]  Michel Bosman,et al.  Nanoplasmonics: classical down to the nanometer scale. , 2012, Nano letters.

[31]  Urs Sennhauser,et al.  Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. , 2010, Nature communications.

[32]  Joel K. W. Yang,et al.  Surface Plasmon Damping Quantified with an Electron Nanoprobe , 2013, Scientific Reports.

[33]  Feldmann,et al.  Drastic reduction of plasmon damping in gold nanorods. , 2002, Physical review letters.

[34]  A. Alivisatos,et al.  Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative. , 2012, ACS nano.

[35]  Harald Giessen,et al.  Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. , 2009, Nature materials.

[36]  S. Evans,et al.  Near‐Bulk Conductivity of Gold Nanowires as Nanoscale Interconnects and the Role of Atomically Smooth Interface , 2010, Advanced materials.

[37]  J. Sambles Grain-boundary scattering and surface plasmon attenuation in noble metal films , 1984 .

[38]  Hyungsoon Im,et al.  Vertically oriented sub-10-nm plasmonic nanogap arrays. , 2010, Nano letters.

[39]  A. Bietsch,et al.  Size and grain-boundary effects of a gold nanowire measured by conducting atomic force microscopy , 2002 .

[40]  Giorgio Volpe,et al.  Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna , 2010, Science.

[41]  C. J. Johnson,et al.  Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis , 2002 .

[42]  F. J. Humphreys,et al.  Recrystallization and Related Annealing Phenomena , 1995 .

[43]  A. Hohenau,et al.  Gold Nanoparticles for Plasmonic Biosensing: The Role of Metal Crystallinity and Nanoscale Roughness , 2011, 1111.0811.