Topics in classical and quantum linear stochastic systems

This thesis considers two topics in the area of linear stochastic systems. The first topic is the construction of approximate finite dimensional linear time invariant (LTI) models for classical wide sense stationary stochastic signals with a non-coercive and non-rational spectral density, utilizing the recently developed theory of degree constrained rational interpolation. Non-coercive means that the spectral density has zeros on the unit circle or the imaginary axis (depending on whether the stochastic process is in discrete or continuous time, respectively), while non-rationality implies that the underlying system generating such a signal is infinite dimensional. As one example, spectral densities of this type appear when measurements are taken of signals that have traversed through the earth’s turbulent atmosphere, such as light from a distant star captured by astronomical telescopes on the ground. The operation of obtaining an LTI model from a spectral density is known in the literature as spectral factorization and has played an important role in both deterministic and stochastic linear systems theory. The non-rational and non-coercive spectral densities which are considered herein are known to be difficult to factorize numerically. The most general algorithms for spectral factorization, such as the maximum entropy method, converge slowly for these spectral densities, and can lead to approximate models of degree higher than is necessary. The first part of this thesis establishes some new results in the theory of degree constrained rational interpolation and then proposes and analyzes a new approach to spectral factorization, based on so-called rational covariance extensions. A new spectral factorization algorithm is then introduced. In a number of simulations, which include some physically motivated spectral densities, it is demonstrated that the new algorithm gives lower degree approximations than the well-known maximum entropy method. The second topic is the issue of physical realizability of a given system represented by linear quantum stochastic differential equations (QSDEs) on a quantum probability space. Physical realizability here means that the QSDEs should rep-

[1]  George J. M. Aitken,et al.  Temporal analysis of stellar wave-front-tilt data , 1997 .

[2]  E. Parzen Foundations of Time Series Analysis and Prediction Theory , 2002 .

[3]  Olof J. Staffans,et al.  Quadratic optimal control of stable systems through spectral factorization , 1995, Math. Control. Signals Syst..

[4]  L. Schiff,et al.  Quantum Mechanics, 3rd ed. , 1973 .

[5]  C. Kulcsár,et al.  Optimal control law for classical and multiconjugate adaptive optics. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[6]  C. Byrnes,et al.  A complete parameterization of all positive rational extensions of a covariance sequence , 1995, IEEE Trans. Autom. Control..

[7]  E. J. Kormondy The Consultants Bureau , 1969 .

[8]  Ryozo Nagamune,et al.  Optimization-based computation of analytic interpolants of bounded complexity , 2005, Syst. Control. Lett..

[9]  D. Lieberman,et al.  Fourier analysis , 2004, Journal of cataract and refractive surgery.

[10]  Hendra Ishwara Nurdin A New Approach to Spectral Factorization of a Class of Matrix-Valued Spectral Densities , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[11]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[12]  Anders Lindquist,et al.  Matrix-valued Nevanlinna-Pick interpolation with complexity constraint: an optimization approach , 2003, IEEE Trans. Autom. Control..

[13]  Tryphon T. Georgiou,et al.  Spectral estimation via selective harmonic amplification , 2001, IEEE Trans. Autom. Control..

[14]  C. Byrnes,et al.  A Convex Optimization Approach to the Rational Covariance Extension Problem , 1999 .

[15]  Patrick Dewilde,et al.  Schur recursions, error formulas, and convergence of rational estimators for stationary stochastic sequences , 1981, IEEE Trans. Inf. Theory.

[16]  Wiseman,et al.  Quantum theory of continuous feedback. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[17]  F. Kollmann V. A. Bazhenov: Piezoelectric Properties of Wood (Authorized Translation from the Russian). Consultants Bureau, New York 1961. 180 S., 4°, 55 Abb. Preis: $ 9.50 , 1962 .

[18]  C. A. Desoer,et al.  Nonlinear Systems Analysis , 1978 .

[19]  Brian D. O. Anderson,et al.  Network Analysis and Synthesis: A Modern Systems Theory Approach , 2006 .

[20]  Tryphon T. Georgiou,et al.  A generalized entropy criterion for Nevanlinna-Pick interpolation with degree constraint , 2001, IEEE Trans. Autom. Control..

[21]  Ryozo Nagamune Closed-loop shaping based on Nevanlinna-Pick interpolation with a degree bound , 2004, IEEE Transactions on Automatic Control.

[22]  Ryozo Nagamune,et al.  Computation of bounded degree Nevanlinna-Pick interpolants by solving nonlinear equations , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[23]  P. Duren Theory of H[p] spaces , 1970 .

[24]  A. Holevo Statistical structure of quantum theory , 2001 .

[25]  C. Gardiner,et al.  Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics , 2004 .

[26]  K. Jacobs,et al.  FEEDBACK CONTROL OF QUANTUM SYSTEMS USING CONTINUOUS STATE ESTIMATION , 1999 .

[27]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[28]  N. Wiener,et al.  The prediction theory of multivariate stochastic processes , 1957 .

[29]  Richard A. Davis,et al.  Time Series: Theory and Methods (2nd ed.). , 1992 .

[30]  P. Khargonekar,et al.  State-space solutions to standard H2 and H∞ control problems , 1988, 1988 American Control Conference.

[31]  Frank M. Callier,et al.  The spectral factorization problem for SISO distributed systems , 1987 .

[32]  A. Schaft L2-Gain and Passivity Techniques in Nonlinear Control. Lecture Notes in Control and Information Sciences 218 , 1996 .

[33]  Joseph J. Winkin,et al.  Spectral factorization and LQ-optimal regulation for multivariable distributed systems , 1990 .

[34]  A. Balakrishnan Introduction to Random Processes in Engineering , 1995 .

[35]  Ali H. Sayed,et al.  A survey of spectral factorization methods , 2001, Numer. Linear Algebra Appl..

[36]  Hendra Ishwara Nurdin New results on the rational covariance extension problem with degree constraint , 2006, Syst. Control. Lett..

[37]  Tryphon T. Georgiou,et al.  The interpolation problem with a degree constraint , 1999, IEEE Trans. Autom. Control..

[38]  G. Seber Factorization of Matrices , 2007 .

[39]  Douglas P. Looze Minimum variance control structure for adaptive optics systems , 2006 .

[40]  P. Dewilde,et al.  Lossless chain scattering matrices and optimum linear prediction: The vector case , 1981 .

[41]  Tryphon T. Georgiou,et al.  Realization of power spectra from partial covariance sequences , 1987, IEEE Trans. Acoust. Speech Signal Process..

[42]  G. Heinig Inversion of Toeplitz-plus-Hankel matrices with arbitrary rank profile , 2001 .

[43]  N. Wiener,et al.  The prediction theory of multivariate stochastic processes, II , 1958 .

[44]  R. Rockafellar Conjugate Duality and Optimization , 1987 .

[45]  C. Byrnes,et al.  Generalized interpolation in $H^\infty$ with a complexity constraint , 2004 .

[46]  V. P. Belavkin Continuous non-demolition observation quantum filtering and optimal estimation , 1991 .

[47]  Hendra I. Nurdin Spectral Factorization of a Class of Matrix-Valued Spectral Densities , 2006, SIAM J. Control. Optim..

[48]  Tryphon T. Georgiou,et al.  A new approach to spectral estimation: a tunable high-resolution spectral estimator , 2000, IEEE Trans. Signal Process..

[49]  Minyue Fu,et al.  Generalizations of the Nevanlinna-Pick interpolation Problem , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[50]  D.P. Looze Minimum variance control structure for adaptive optics systems , 2005, Proceedings of the 2005, American Control Conference, 2005..

[51]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[52]  Timothy C. Ralph,et al.  A Guide to Experiments in Quantum Optics , 1998 .

[53]  Stacey Gage,et al.  Creating a Unified Graphical Wind Turbulence Model from Multiple Specifications , 2003 .

[54]  Peter E. Caines,et al.  On the L ∞ consistency of L 2 estimators , 1989 .

[55]  M. Sentís Quantum theory of open systems , 2002 .

[56]  J. Ignacio Cirac,et al.  Entanglement generation and Hamiltonian simulation in continuous-variable systems , 2003 .

[57]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[58]  Hideo Mabuchi,et al.  Real-Time Quantum Feedback Control of Atomic Spin-Squeezing , 2004, Science.

[59]  Wiseman Hm Erratum: Quantum theory of continuous feedback , 1994 .

[60]  H.I. Nurdin,et al.  Computation of Degree Constrained Rational Interpolants with Non-Strictly Positive Parametrizing Functions via Homotopy Continuation , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[61]  Anders Lindquist,et al.  The Uncertain Generalized Moment Problem with Complexity Constraint , 2003 .

[62]  Dante C. Youla,et al.  Bauer-type factorization of positive matrices and the theory of matrix polynomials orthogonal on the unit circle , 1978 .

[63]  F. Illuminati,et al.  Multiphoton quantum optics and quantum state engineering , 2006, quant-ph/0701050.

[64]  M. James,et al.  Stability, gain, and robustness in quantum feedback networks (13 pages) , 2005, quant-ph/0511140.

[65]  Anders Lindquist,et al.  On the Duality between Filtering and Nevanlinna--Pick Interpolation , 2000, SIAM J. Control. Optim..

[66]  R. Langer Interpolation and Approximation by Rational Functions in the Complex Domain , 1937 .

[67]  李幼升,et al.  Ph , 1989 .

[68]  P. Khargonekar,et al.  An algebraic Riccati equation approach to H ∞ optimization , 1988 .

[69]  M.R. James,et al.  H∞ Control of Linear Quantum Systems , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[70]  Anders Lindquist,et al.  From Finite Covariance Windows to Modeling Filters: A Convex Optimization Approach , 2001, SIAM Rev..

[71]  Robin L. Hudson,et al.  Quantum Ito's formula and stochastic evolutions , 1984 .

[72]  Patrick Dewilde,et al.  How to approximate a spectrum recursively using ARMA models , 1982, ICASSP.

[73]  J. Conan,et al.  Wave-front temporal spectra in high-resolution imaging through turbulence , 1995 .

[74]  M. Vidyasagar,et al.  Nonlinear systems analysis (2nd ed.) , 1993 .

[75]  B. Welsh,et al.  Imaging Through Turbulence , 1996 .

[76]  Ian R. Petersen,et al.  Robust Properties of Risk-Sensitive Control , 2000, Math. Control. Signals Syst..

[77]  U.-L. Ly,et al.  Time-domain computation of aircraft gust covariance matrices , 1980 .

[78]  Peter E. Caines,et al.  Corrigendum to “On the L∞ consistency of L2 estimators”☆☆☆ , 1989 .

[79]  Steven Barclay,et al.  Continuity of the Spectral Factorization Mapping , 2004 .

[80]  P. Whittle On the fitting of multivariate autoregressions, and the approximate canonical factorization of a spectral density matrix , 1963 .

[81]  M. M. Colavita,et al.  Interferometric seeing measurements on Mt. Wilson: power spectra and outer scales. , 1995, Applied optics.

[82]  T. Kailath,et al.  On a generalized Szegö- Levinson realization algorithm for optimal linear predictors based on a network synthesis approach , 1978 .

[83]  J. Willems Dissipative dynamical systems part I: General theory , 1972 .

[84]  Y. Kamp,et al.  Orthogonal polynomial matrices on the unit circle , 1978 .

[85]  Ryozo Nagamune,et al.  An extension of a Nevanlinna-Pick interpolation solver to cases including derivative constraints , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[86]  Ian R. Petersen,et al.  Control of Linear Quantum Stochastic Systems , 2007 .

[87]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[88]  Philippe Delsarte,et al.  On a generalization of the Szegö-Levinson recurrence and its application in lossless inverse scattering , 1992, IEEE Trans. Inf. Theory.

[89]  M.R. James,et al.  $H^{\infty}$ Control of Linear Quantum Stochastic Systems , 2008, IEEE Transactions on Automatic Control.

[90]  Michele Pavon,et al.  On the Georgiou-Lindquist approach to constrained Kullback-Leibler approximation of spectral densities , 2006, IEEE Transactions on Automatic Control.

[91]  Matthew R. James,et al.  An Introduction to Quantum Filtering , 2006, SIAM Journal of Control and Optimization.

[92]  C. Byrnes,et al.  GENERALIZED INTERPOLATION IN H ∞ WITH A COMPLEXITY CONSTRAINT , 2004 .

[93]  Anders Lindquist,et al.  A covariance extension approach to identification of time series , 2000, Autom..

[94]  Ruizhong Rao,et al.  Turbulence spectrum effect on wave temporal-frequency spectra for light propagating through the atmosphere , 1999 .

[95]  H. Helson,et al.  Prediction theory and Fourier Series in several variables , 1958 .

[96]  J. Walsh Interpolation and Approximation by Rational Functions in the Complex Domain , 1935 .

[97]  K. Parthasarathy An Introduction to Quantum Stochastic Calculus , 1992 .

[98]  Hidenori Kimura,et al.  Transfer function approach to quantum control-part I: Dynamics of quantum feedback systems , 2003, IEEE Trans. Autom. Control..

[99]  Georg Heinig,et al.  New Fast Algorithms for Toeplitz-Plus-Hankel Matrices , 2003, SIAM J. Matrix Anal. Appl..

[100]  John K. Stockton,et al.  Adaptive homodyne measurement of optical phase. , 2002, Physical review letters.

[101]  Hendra Ishwara Nurdin,et al.  On the solutions of the rational covariance extension problem corresponding to pseudopolynomials having boundary zeros , 2006, IEEE Transactions on Automatic Control.

[102]  B. Anderson,et al.  A first prin-ciples solution to the nonsingular H control problem , 1991 .

[103]  Ryozo Nagamune A robust solver using a continuation method for Nevanlinna-Pick interpolation with degree constraint , 2003, IEEE Trans. Autom. Control..

[104]  P. Dewilde,et al.  Lossless inverse scattering, digital filters, and estimation theory , 1984, IEEE Trans. Inf. Theory.

[105]  W. D. Ray Time Series: Theory and Methods , 1990 .

[106]  P. Enqvist A homotopy approach to rational covariance extension with degree constraint , 2001 .

[107]  C. Byrnes,et al.  The Generalized Moment Problem with Complexity Constraint , 2006 .

[108]  S. Braunstein,et al.  Quantum computation over continuous variables , 1998 .

[109]  Hidenori Kimura,et al.  Transfer function approach to quantum Control-Part II: Control concepts and applications , 2003, IEEE Trans. Autom. Control..

[110]  Dénes Petz,et al.  An invitation to the algebra of canonical commutation relations , 1990 .

[111]  V. P. Belavkin,et al.  Optimal Quantum Filtering and Quantum Feedback Control , 2005 .

[112]  H. Landau,et al.  On the well-posedness of the rational covariance extension problem , 1997 .

[113]  P. Khargonekar,et al.  State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .