The Gaia-ESO Survey: open clusters in Gaia-DR1

Context. Determination and calibration of the ages of stars, which heavily rely on stellar evolutionary models, are very challenging, while representing a crucial aspect in many astrophysical areas. Aims. We describe the methodologies that, taking advantage of Gaia-DR1 and the Gaia-ESO Survey data, enable the comparison of observed open star cluster sequences with stellar evolutionary models. The final, long-term goal is the exploitation of open clusters as age calibrators. Methods. We perform a homogeneous analysis of eight open clusters using the Gaia-DR1 TGAS catalogue for bright members and information from the Gaia-ESO Survey for fainter stars. Cluster membership probabilities for the Gaia-ESO Survey targets are derived based on several spectroscopic tracers. The Gaia-ESO Survey also provides the cluster chemical composition. We obtain cluster parallaxes using two methods. The first one relies on the astrometric selection of a sample of bona fide members, while the other one fits the parallax distribution of a larger sample of TGAS sources. Ages and reddening values are recovered through a Bayesian analysis using the 2MASS magnitudes and three sets of standard models. Lithium depletion boundary (LDB) ages are also determined using literature observations and the same models employed for the Bayesian analysis. Results. For all but one cluster, parallaxes derived by us agree with those presented in Gaia Collaboration (2017, AA we provide evidence supporting our own determination. Inferred cluster ages are robust against models and are generally consistent with literature values. Conclusions. The systematic parallax errors inherent in the Gaia DR1 data presently limit the precision of our results. Nevertheless, we have been able to place these eight clusters onto the same age scale for the first time, with good agreement between isochronal and LDB ages where there is overlap. Our approach appears promising and demonstrates the potential of combining Gaia and ground-based spectroscopic datasets.

[1]  S. Randich,et al.  On the dispersion in lithium and potassium among late-type stars in young clusters: IC 2602 , 2001, astro-ph/0108158.

[2]  Austria,et al.  Low-temperature gas opacity. ÆSOPUS: a versatile and quick computational tool , 2009, 0907.3248.

[3]  J. R. Stauffer,et al.  The Lithium-Depletion Boundary and the Age of the Young Open Cluster IC 2391 , 1999, astro-ph/9907007.

[4]  S. Degl'Innocenti,et al.  The Pisa Stellar Evolution Data Base for low-mass stars , 2012, 1202.4864.

[5]  J. H. M. M. Schmitt,et al.  An X-ray study of the open clusters NGC 2451 A and B , 2003 .

[6]  Vincent Prat,et al.  Toward a consistent use of overshooting parametrizations in 1D stellar evolution codes , 2015, 1506.03100.

[7]  C. Babusiaux,et al.  TheGaia-ESO Survey: Empirical determination of the precision of stellar radial velocities and projected rotation velocities , 2015, Astronomy & Astrophysics.

[8]  David R. Soderblom,et al.  The Ages of Stars , 2007, 1003.6074.

[9]  Forrest J. Rogers,et al.  Updated Opal Opacities , 1996 .

[10]  C. Barache,et al.  Gaia Data Release 1: Astrometry - one billion positions, two million proper motions and parallaxes , 2016, 1609.04303.

[11]  A. Moitinho,et al.  New catalogue of optically visible open clusters and candidates , 2002, astro-ph/0203351.

[12]  Tim Naylor,et al.  Optimal photometry for colour–magnitude diagrams and its application to NGC 2547 , 2002, astro-ph/0205005.

[13]  M. Dworetsky,et al.  Peculiar versus Normal Phenomena in A-type and Related Stars , 1993 .

[14]  F. Kupka,et al.  Convection in the atmospheres and envelopes of Pre-Main Sequence stars , 2004 .

[15]  Sofia Randich,et al.  Time scales of Li evolution: A Homogeneous analysis of open clusters from ZAMS to late-MS , 2005 .

[16]  F. Allard,et al.  Evolutionary models for low-mass stars and brown dwarfs: uncertainties and limits at very young ages , 2002 .

[17]  Mauro Barbieri,et al.  Improving PARSEC models for very low mass stars , 2014, 1409.0322.

[18]  Aaron Dotter,et al.  MESA ISOCHRONES AND STELLAR TRACKS (MIST) 0: METHODS FOR THE CONSTRUCTION OF STELLAR ISOCHRONES , 2016, 1601.05144.

[19]  N. Lodieu,et al.  IC 2602: a lithium depletion boundary age and new candidate low-mass stellar members* , 2010 .

[20]  Phillip A. Cargile,et al.  EMPLOYING A NEW, BVIc PHOTOMETRIC SURVEY OF IC 4665 TO INVESTIGATE THE AGE OF THIS YOUNG OPEN CLUSTER , 2010, 1005.3329.

[21]  Vera Kozhurina-Platais,et al.  WIYN Open Cluster Study. VII. NGC 2451A and the Hipparcos Distance Scale , 2001 .

[22]  Luca Casagrande,et al.  The helium abundance and ΔY/ΔZ in lower main-sequence stars , 2007 .

[23]  John R. Stauffer,et al.  Rotation and Activity in the Solar-Metallicity Open Cluster NGC 2516* , 2002 .

[24]  A. Bragaglia,et al.  TheGaia-ESO Survey: Probes of the inner disk abundance gradient , 2016, Astronomy & Astrophysics.

[25]  S. Degl'Innocenti,et al.  Statistical errors and systematic biases in the calibration of the convective core overshooting with eclipsing binaries - A case study: TZ Fornacis , 2016, 1612.07066.

[26]  Observatoire de la Côte d'Azur,et al.  Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties , 2016, 1609.04172.

[27]  D. J. James,et al.  Rotation and lithium in the late-type stars of NGC 2516 , 1998 .

[28]  C. Babusiaux,et al.  Gaia-ESO Survey: Analysis of pre-main sequence stellar spectra , 2015, 1501.04450.

[29]  David R. Alexander,et al.  Low-Temperature Opacities , 2005, astro-ph/0502045.

[30]  Lennart Lindegren,et al.  The Tycho-Gaia astrometric solution. How to get 2.5 million parallaxes with less than one year of Gaia data , 2014, 1412.8770.

[31]  R. Jackson,et al.  The effect of star-spots on the ages of low-mass stars determined from the lithium depletion boundary , 2014, 1410.0022.

[32]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[33]  Bernd Freytag,et al.  Solar Chemical Abundances Determined with a CO5BOLD 3D Model Atmosphere , 2010, 1003.1190.

[34]  L. Pasquini,et al.  The Gaia-ESO Survey: the analysis of high-resolution UVES spectra of FGK-type stars , 2014, 1409.0568.

[35]  F. Palla,et al.  Age Spreads in Star-forming Regions: The Lithium Test in the Orion Nebula Cluster , 2005 .

[36]  F. V. Leeuwen,et al.  Parallaxes and proper motions for 20 open clusters as based on the new Hipparcos catalogue , 2009, 0902.1039.

[37]  J. Alves,et al.  On the difference between nuclear and contraction ages , 2006 .

[38]  Suzanne Talon,et al.  Impact of internal gravity waves on the rotation profile inside pre-main sequence low-mass stars , 2013 .

[39]  Gilles Chabrier,et al.  An Equation of State for Low-Mass Stars and Giant Planets , 1995 .

[40]  A. L. Tadross,et al.  Morphological analysis of open clusters’ properties: II. Relationships projected onto the galactic plane , 2002 .

[41]  Dean M. Townsley,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): BINARIES, PULSATIONS, AND EXPLOSIONS , 2015, 1506.03146.

[42]  L. Szabados,et al.  Gaia Data Release 1. Open cluster astrometry: performance, limitations, and future prospects , 2017, 1703.01131.

[43]  Liverpool John Moores University,et al.  Stellar models with mixing length and T(tau) relations calibrated on 3D convection simulations , 2015, 1503.04582.

[44]  A. Bragaglia,et al.  Gaia-ESO Survey: Empirical classification of VLT/Giraffe stellar spectra in the wavelength range 6440–6810 Å in the γ Velorum cluster, and calibration of spectral indices , 2014, 1405.1205.

[45]  Forrest J. Rogers,et al.  Updated and Expanded OPAL Equation-of-State Tables: Implications for Helioseismology , 2002 .

[46]  Garrett Somers,et al.  Rotation, inflation, and lithium in the Pleiades , 2014, 1410.4238.

[47]  John R. Stauffer,et al.  The evolution of the lithium abundances of solar-type stars. III - The Pleiades , 1993 .

[48]  Georges Meylan,et al.  Structure and dynamics of globular clusters , 1993 .

[49]  Heidelberg,et al.  Testing pre-main-sequence models: the power of a Bayesian approach , 2011, 1110.0852.

[50]  Paul M. Brunet,et al.  The Gaia mission , 2013, 1303.0303.

[51]  E. Paunzen,et al.  Photoelectric search for peculiar stars in open clusters. XV. Feinstein 1, NGC 2168, NGC 2323, NGC 2437, NGC 2547, NGC 4103, NGC 6025, NGC 6633, Stock 2, and Trumpler 2 , 2014, 1403.3538.

[52]  Christopher J. Burke,et al.  Theoretical Examination of the Lithium Depletion Boundary , 2004 .

[53]  Emanuele Tognelli,et al.  Cumulative theoretical uncertainties in lithium depletion boundary age , 2015, 1504.02698.

[54]  C. Babusiaux,et al.  The Gaia-ESO Survey: processing FLAMES-UVES spectra , 2014 .

[55]  Michiel Cottaar,et al.  Characterizing a cluster’s dynamic state using a single epoch of radial velocities , 2012, 1209.2623.

[56]  Jieun Choi,et al.  MESA ISOCHRONES AND STELLAR TRACKS (MIST). I. SOLAR-SCALED MODELS , 2016, 1604.08592.

[57]  F. Palla,et al.  Detection of the lithium depletion boundary in the young open cluster IC 4665 , 2007, 0712.0226.

[58]  Gregory A. Feiden,et al.  MAGNETIC INHIBITION OF CONVECTION AND THE FUNDAMENTAL PROPERTIES OF LOW-MASS STARS. II. FULLY CONVECTIVE MAIN-SEQUENCE STARS , 2014, 1405.1767.

[59]  N. A. Walton,et al.  PLATO as it is: a legacy mission for Galactic archaeology , 2017, 1706.03778.

[60]  Michael S. Bessell,et al.  The Open Cluster NGC 2516. I. Optical Photometry , 2002 .

[61]  S. Degl'Innocenti,et al.  Cumulative physical uncertainty in modern stellar models - I. The case of low-mass stars , 2012, 1211.0706.

[62]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[63]  Gregory A. Feiden,et al.  REEVALUATING THE MASS–RADIUS RELATION FOR LOW-MASS, MAIN-SEQUENCE STARS , 2012, 1207.3090.

[64]  M. Giampapa,et al.  Rotational Velocities and Chromospheric/Coronal Activity of Low-Mass Stars in the Young Open Clusters IC 2391 and IC 2602 , 1997 .

[65]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: lithium depletion in the Gamma Velorum cluster and inflated radii in low-mass pre-main-sequence stars , 2016, Monthly Notices of the Royal Astronomical Society.

[66]  M. H. Montgomery,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): PLANETS, OSCILLATIONS, ROTATION, AND MASSIVE STARS , 2013, 1301.0319.

[67]  Tim Naylor Rob Jeffries,et al.  A maximum likelihood method for fitting colour-magnitude diagrams , 2006, astro-ph/0609764.

[68]  L. Girardi,et al.  parsec: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code , 2012, 1208.4498.

[69]  Luca Casagrande,et al.  Synthetic stellar photometry – I. General considerations and new transformations for broad-band systems , 2014, 1407.6095.

[70]  A. Bragaglia,et al.  The Gaia-ESO Survey: radial distribution of abundances in the Galactic disc from open clusters and young-field stars , 2017, 1703.00762.

[71]  Elena Schilbach,et al.  Single stars in the Hyades open cluster. Fiducial sequence for testing stellar and atmospheric models , 2015, 1509.00053.

[72]  L. Lindegren,et al.  Broad-band photometric colors and effective temperature calibrations for late-type giants. I. Z = 0.02 , 2005, astro-ph/0510434.

[73]  Casey Papovich,et al.  Broad-band photometric colors and effective temperature calibrations for late-type giants . II . Z < 0 . 02 , 2022 .

[74]  A. Klutsch,et al.  The Gaia-ESO Survey: The present-day radial metallicity distribution of the Galactic disc probed by pre-main-sequence clusters , 2017, 1702.03461.

[75]  S. Degl'Innocenti,et al.  Calibrating convective-core overshooting with eclipsing binary systems. The case of low-mass main-sequence stars , 2016, 1601.01535.

[76]  Mario Mateo,et al.  Internal Kinematics of the Fornax Dwarf Spheroidal Galaxy , 2005 .

[77]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[78]  E. Pancino,et al.  The gaia -ESO survey : Calibration strategy , 2016, 1610.06480.

[79]  A. Klutsch,et al.  The Gaia-ESO Survey: Discovery of a spatially extended low-mass population in the Vela OB2 association , 2015, 1501.01330.

[80]  Tim Naylor,et al.  Low mass stars, brown dwarf candidates and the mass function of the young open cluster NGC 2547 , 2004 .

[81]  N. F. Martin,et al.  A Keck/DEIMOS spectroscopic survey of faint Galactic satellites: searching for the least massive dwarf galaxies , 2007, 0705.4622.

[82]  Lennart Lindegren,et al.  Determination of stellar ages from isochrones: Bayesian estimation versus isochrone fitting , 2005 .

[83]  Frank Timmes,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA) , 2010, 1009.1622.

[84]  Kurtis A. Williams,et al.  A Photometric and Spectroscopic Search for White Dwarfs in the Open Clusters NGC 6633 and NGC 7063 , 2006, astro-ph/0611929.

[85]  Russel J. White,et al.  A SURVEY OF STELLAR FAMILIES: MULTIPLICITY OF SOLAR-TYPE STARS , 2009, 1007.0414.

[86]  S. Degl'Innocenti,et al.  The Pisa pre-main sequence tracks and isochrones - A database covering a wide range of Z, Y, mass, and age values , 2011, 1107.2318.

[87]  S. Degl'Innocenti,et al.  Astrophysical implications of the proton-proton cross section updates , 2014, 1411.5480.

[88]  Joana M. Oliveira,et al.  The Lithium depletion boundary in NGC 2547 as a test of pre-main-sequence evolutionary models , 2004, astro-ph/0411112.

[89]  J. Landstreet,et al.  Accurate age determinations of several nearby open clusters containing magnetic Ap stars , 2014, 1407.4531.

[90]  P. Eggenberger,et al.  Effects of rotational mixing on the asteroseismic properties of solar-type stars , 2010, 1009.4541.

[91]  John R. Stauffer,et al.  Spectroscopy of Very Low Mass Stars and Brown Dwarfs in IC 2391: Lithium Depletion and Hα Emission , 2004 .

[92]  Tim Naylor,et al.  Are pre-main-sequence stars older than we thought? , 2009, 0907.2307.