Image-based rendering in the gradient domain

We propose a novel image-based rendering algorithm for handling complex scenes that may include reflective surfaces. Our key contribution lies in treating the problem in the gradient domain. We use a standard technique to estimate scene depth, but assign depths to image gradients rather than pixels. A novel view is obtained by rendering the horizontal and vertical gradients, from which the final result is reconstructed through Poisson integration using an approximate solution as a data term. Our algorithm is able to handle general scenes including reflections and similar effects without explicitly separating the scene into reflective and transmissive parts, as required by previous work. Our prototype renderer is fully implemented on the GPU and runs in real time on commodity hardware.

[1]  Shree K. Nayar,et al.  Stereo and Specular Reflection , 1998, International Journal of Computer Vision.

[2]  Michael Goesele,et al.  Image-based rendering for scenes with reflections , 2012, ACM Trans. Graph..

[3]  Michael Bosse,et al.  Unstructured lumigraph rendering , 2001, SIGGRAPH.

[4]  Anita Sellent,et al.  Floating Textures , 2008, Comput. Graph. Forum.

[5]  Kiriakos N. Kutulakos,et al.  Multi-View Scene Capture by Surfel Sampling: From Video Streams to Non-Rigid 3D Motion, Shape and Reflectance , 2002, International Journal of Computer Vision.

[6]  Michael J. Black,et al.  Skin and bones: multi-layer, locally affine, optical flow and regularization with transparency , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[7]  Richard Szeliski,et al.  The lumigraph , 1996, SIGGRAPH.

[8]  Y. Weiss,et al.  Separating reflections from a single image using local features , 2004, CVPR 2004.

[9]  Arie Yeredor,et al.  Blind Separation of Superimposed Shifted Images Using Parameterized Joint Diagonalization , 2008, IEEE Transactions on Image Processing.

[10]  George Drettakis,et al.  Depth synthesis and local warps for plausible image-based navigation , 2013, TOGS.

[11]  Michal Irani,et al.  Computing occluding and transparent motions , 1994, International Journal of Computer Vision.

[12]  Vladimir Kolmogorov,et al.  Multi-camera Scene Reconstruction via Graph Cuts , 2002, ECCV.

[13]  Heiko Hirschmüller,et al.  Stereo Processing by Semiglobal Matching and Mutual Information , 2008, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Yoav Y. Schechner,et al.  Blind recovery of transparent and semireflected scenes , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[15]  Yoav Y. Schechner,et al.  Polarization-based decorrelation of transparent layers: The inclination angle of an invisible surface , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[16]  Richard Szeliski,et al.  Extracting layers and analyzing their specular properties using epipolar-plane-image analysis , 2005, Comput. Vis. Image Underst..

[17]  Marcus A. Magnor,et al.  Multi-image interpolation based on graph-cuts and symmetric optical flow , 2010, SIGGRAPH '10.

[18]  P. Belhumeur,et al.  Moving gradients: a path-based method for plausible image interpolation , 2009, SIGGRAPH 2009.

[19]  Richard Szeliski,et al.  Layered depth images , 1998, SIGGRAPH.

[20]  Marc Levoy,et al.  Light field rendering , 1996, SIGGRAPH.

[21]  Steven M. Seitz,et al.  Photo tourism: exploring photo collections in 3D , 2006, ACM Trans. Graph..

[22]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[23]  Charles T. Loop,et al.  Computing rectifying homographies for stereo vision , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[24]  Simon Fuhrmann,et al.  Ambient point clouds for view interpolation , 2010, SIGGRAPH 2010.

[25]  Harry Shum,et al.  Image-based rendering , 2006, Found. Trends Comput. Graph. Vis..

[26]  Kenji Mase,et al.  Unified computational theory for motion transparency and motion boundaries based on eigenenergy analysis , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[27]  Kiriakos N. Kutulakos,et al.  Multi-view scene capture by surfel sampling: from video streams to non-rigid 3D motion, shape and reflectance , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[28]  Patrick Pérez,et al.  Poisson image editing , 2003, ACM Trans. Graph..

[29]  Yoav Y. Schechner,et al.  Overcoming visual reverberations , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[30]  Shmuel Peleg,et al.  A Three-Frame Algorithm for Estimating Two-Component Image Motion , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Richard Szeliski,et al.  Piecewise planar stereo for image-based rendering , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[32]  Jitendra Malik,et al.  Modeling and Rendering Architecture from Photographs: A hybrid geometry- and image-based approach , 1996, SIGGRAPH.

[33]  Richard Szeliski,et al.  Layer extraction from multiple images containing reflections and transparency , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[34]  Lance Williams,et al.  View Interpolation for Image Synthesis , 1993, SIGGRAPH.

[35]  Richard Szeliski,et al.  High-quality video view interpolation using a layered representation , 2004, SIGGRAPH 2004.

[36]  J. Shewchuk An Introduction to the Conjugate Gradient Method Without the Agonizing Pain , 1994 .

[37]  Richard Szeliski,et al.  Stereo matching with linear superposition of layers , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Andrea Fusiello Image-based Rendering * , 2003 .

[39]  Voicu Popescu,et al.  Reflected‐Scene Impostors for Realistic Reflections at Interactive Rates , 2006, Comput. Graph. Forum.