Single Item Lot-Sizing Problem with Minimum Order Quantity

[1]  R. Dekker,et al.  Controlling inventories in a supply chain: A case study , 2002 .

[2]  W. Zangwill A Deterministic Multi-Period Production Scheduling Model with Backlogging , 1966 .

[3]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[4]  Mikhail Y. Kovalyov,et al.  An FPTAS for a supply scheduling problem with non‐monotone cost functions , 2008 .

[5]  Chung-Yee Lee,et al.  Inventory replenishment model: lot sizing versus just-in-time delivery , 2004, Oper. Res. Lett..

[6]  G. Fontan,et al.  MIP-BASED HEURISTICS FOR CAPACITATED LOTSIZING PROBLEMS , 2003 .

[7]  Marshall L. Fisher,et al.  Reducing the Cost of Demand Uncertainty Through Accurate Response to Early Sales , 1996, Oper. Res..

[8]  Albert P. M. Wagelmans,et al.  Fully Polynomial Approximation Schemes for Single-Item Capacitated Economic Lot-Sizing Problems , 2001, Math. Oper. Res..

[9]  Laurence A. Wolsey,et al.  Single item lot-sizing with non-decreasing capacities , 2007, Math. Program..

[10]  Yves Pochet Valid inequalities and separation for capacitated economic lot sizing , 1988 .

[11]  Mikhail Y. Kovalyov,et al.  An FPTAS for a single-item capacitated economic lot-sizing problem with monotone cost structure , 2006, Math. Program..

[12]  Mikhail Y. Kovalyov,et al.  A single-item economic lot-sizing problem with a non-uniform resource: Approximation , 2008, Eur. J. Oper. Res..

[13]  Gerhard J. Woeginger,et al.  Approximation of the supply scheduling problem , 2005, Oper. Res. Lett..

[14]  M. Florian,et al.  DETERMINISTIC PRODUCTION PLANNING WITH CONCAVE COSTS AND CAPACITY CONSTRAINTS. , 1971 .

[15]  E. Anderson,et al.  Capacitated lot-sizing with minimum batch sizes and setup times , 1993 .

[16]  M. Katehakis,et al.  ON THE STRUCTURE OF OPTIMAL ORDERING POLICIES FOR STOCHASTIC INVENTORY SYSTEMS WITH MINIMUM ORDER QUANTITY , 2006, Probability in the Engineering and Informational Sciences.

[17]  J. K. Lenstra,et al.  Deterministic Production Planning: Algorithms and Complexity , 1980 .

[18]  Miguel Constantino,et al.  Lower Bounds in Lot-Sizing Models: A Polyhedral Study , 1998, Math. Oper. Res..

[19]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[20]  Albert P. M. Wagelmans,et al.  An $O(T^3)$ algorithm for the economic lot-sizing problem with constant capacities , 1993 .