A new approach to stability analysis for constrained finite receding horizon control without end constraints

We present a new approach to the stability analysis of finite receding horizon control applied to constrained linear systems. By relating the final predicted state to the current state through a bound on the terminal cost, it is shown that knowledge of upper and lower bounds for the finite horizon costs is sufficient to determine the stability of a receding horizon controller. This analysis is valid for receding horizon schemes with arbitrary positive-definite terminal weights and does not rely on the use of stabilizing constraints. The result is a computable test for stability, and two simple examples are used to illustrate its application.

[1]  M. Gevers,et al.  Fake algebraic Riccati techniques and stability , 1988 .

[2]  C.C. White,et al.  Dynamic programming and stochastic control , 1978, Proceedings of the IEEE.

[3]  R. E. Kalman,et al.  Control System Analysis and Design Via the “Second Method” of Lyapunov: I—Continuous-Time Systems , 1960 .

[4]  A. Saberi,et al.  Semi-global stabilization of linear discrete-time systems subject to input saturation via linear feedback-an ARE-based approach , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[5]  J. Richalet,et al.  Model predictive heuristic control: Applications to industrial processes , 1978, Autom..

[6]  M. Morari,et al.  Global stabilization of linear discrete-time systems with bounded controls-a model predictive control approach , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[7]  J. Shamma,et al.  Linear nonquadratic optimal control , 1997, IEEE Trans. Autom. Control..

[8]  Anders Rantzer,et al.  Piecewise linear quadratic optimal control , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[9]  M. Kothare,et al.  Robust constrained model predictive control using linear matrix inequalities , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[10]  A. Sideris,et al.  Norm Based Optimally Robust Control of Constrained Discrete Time Linear Systems , 1991, 1991 American Control Conference.

[11]  Manfred Morari,et al.  Model predictive control: Theory and practice , 1988 .

[12]  W. Kwon,et al.  A modified quadratic cost problem and feedback stabilization of a linear system , 1977 .

[13]  J. Rawlings,et al.  The stability of constrained receding horizon control , 1993, IEEE Trans. Autom. Control..

[14]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[15]  H. Michalska,et al.  Receding horizon control of nonlinear systems , 1988, Proceedings of the 28th IEEE Conference on Decision and Control,.

[16]  K. T. Tan,et al.  Linear systems with state and control constraints: the theory and application of maximal output admissible sets , 1991 .

[17]  Robert R. Bitmead,et al.  Adaptive optimal control , 1990 .

[18]  J. Primbs,et al.  Constrained finite receding horizon linear quadratic control , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[19]  Ali Saberi,et al.  Semi-global exponential stabilization of linear discrete-time systems subject to input saturation via linear feedbacks , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[20]  R. E. Kalman,et al.  Control System Analysis and Design Via the “Second Method” of Lyapunov: II—Discrete-Time Systems , 1960 .

[21]  J. Rawlings,et al.  Infinite Horizon Linear Quadratic Control with Constraints , 1996 .

[22]  Mario Sznaier,et al.  Norm based robust control of state-constrained discrete-time linear systems , 1992 .

[23]  J. Meditch,et al.  Applied optimal control , 1972, IEEE Transactions on Automatic Control.

[24]  Robert R. Bitmead,et al.  OPTIMAL CONTROL REDESIGN OF GENERALIZED PREDICTIVE CONTROL , 1990 .

[25]  M. Morari,et al.  Control of linear unstable systems with constraints , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[26]  W. Kwon,et al.  On feedback stabilization of time-varying discrete linear systems , 1978 .

[27]  M. Sznaier A set induced norm approach to the robust control of constrained systems , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[28]  Manfred Morari,et al.  Model predictive control: Theory and practice - A survey , 1989, Autom..

[29]  D. Chmielewski,et al.  On constrained infinite-time linear quadratic optimal control , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[30]  J. Richalet,et al.  Industrial applications of model based predictive control , 1993, Autom..

[31]  E. Gilbert,et al.  Optimal infinite-horizon feedback laws for a general class of constrained discrete-time systems: Stability and moving-horizon approximations , 1988 .

[32]  Edoardo Mosca,et al.  Global predictive regulation of null-controllable input-saturated linear systems , 1999, IEEE Trans. Autom. Control..

[33]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[34]  J. Doyle,et al.  Robust simulation and nonlinear performance , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[35]  A. Teel Semi-global stabilizability of linear null controllable systems with input nonlinearities , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[36]  Manfred Morari,et al.  Contractive Model Predictive Control with Local Linearization for Nonlinear Systems , 1998 .

[37]  Huibert Kwakernaak,et al.  Linear Optimal Control Systems , 1972 .

[38]  C. C. Chen,et al.  On receding horizon feedback control , 1981, Autom..

[40]  Mario Sznaier,et al.  Robust control of systems under mixed time/frequency domain constraints via convex optimization , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[41]  Ian R. Petersen,et al.  Monotonicity and stabilizability- properties of solutions of the Riccati difference equation: Propositions, lemmas, theorems, fallacious conjectures and counterexamples☆ , 1985 .

[42]  Jose Alvarez-Ramirez,et al.  Global stabilization of discrete-time linear systems with bounded inputs , 1996 .

[43]  M. Sznaier,et al.  Robust control of constrained systems via convex optimization , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.