New developments of biofluid‐based biomarkers for routine diagnosis and disease trajectories in frontotemporal dementia

Frontotemporal dementia (FTD) covers a spectrum of neurodegenerative disorders with different phenotypes, genetic backgrounds, and pathological states. Its clinicopathological diversity challenges the diagnostic process and the execution of clinical trials, calling for specific diagnostic biomarkers of pathologic FTD types. There is also a need for biomarkers that facilitate disease staging, quantification of severity, monitoring in clinics and observational studies, and for evaluation of target engagement and treatment response in clinical trials. This review discusses current FTD biofluid‐based biomarker knowledge taking into account the differing applications. The limitations, knowledge gaps, and challenges for the development and implementation of such markers are also examined. Strategies to overcome these hurdles are proposed, including the technologies available, patient cohorts, and collaborative research initiatives. Access to robust and reliable biomarkers that define the exact underlying pathophysiological FTD process will meet the needs for specific diagnosis, disease quantitation, clinical monitoring, and treatment development.

[1]  N. Mulder,et al.  Revealing the Mutational Spectrum in Southern Africans With Amyotrophic Lateral Sclerosis , 2022, Neurology: Genetics.

[2]  H. Zetterberg,et al.  A high‐performance biomarker panel for Alzheimer’s disease screening and staging identified by large‐scale plasma proteomic profiling , 2021, Alzheimer's & Dementia.

[3]  J. Clarimón,et al.  Plasma glial fibrillary acidic protein and neurofilament light chain for the diagnostic and prognostic evaluation of frontotemporal dementia , 2021, Translational Neurodegeneration.

[4]  Sheng-Yang M. Goh,et al.  Sex differences in the behavioral variant of frontotemporal dementia: A new window to executive and behavioral reserve , 2021, Alzheimer's & Dementia.

[5]  K. Blennow,et al.  Characterization of pre‐analytical sample handling effects on a panel of Alzheimer's disease–related blood‐based biomarkers: Results from the Standardization of Alzheimer's Blood Biomarkers (SABB) working group , 2021, Alzheimer's & dementia : the journal of the Alzheimer's Association.

[6]  R. Vandenberghe,et al.  A panel of CSF proteins separates genetic frontotemporal dementia from presymptomatic mutation carriers: a GENFI study , 2021, Molecular neurodegeneration.

[7]  W. Flier,et al.  Blood-based biomarkers for Alzheimer's disease: towards clinical implementation , 2021, The Lancet Neurology.

[8]  William T. Hu,et al.  Sex Hormone-Binding Globulin (SHBG) in Cerebrospinal Fluid Does Not Discriminate between the Main FTLD Pathological Subtypes but Correlates with Cognitive Decline in FTLD Tauopathies , 2021, Biomolecules.

[9]  P. Scheltens,et al.  A neurologist’s perspective on serum neurofilament light in the memory clinic: a prospective implementation study , 2021, Alzheimer's research & therapy.

[10]  G. Bergström,et al.  Next generation plasma proteome profiling to monitor health and disease , 2021, Nature Communications.

[11]  A. Fagan,et al.  African Americans Have Differences in CSF Soluble TREM2 and Associated Genetic Variants , 2021, Neurology: Genetics.

[12]  A. Lleó,et al.  Race and Alzheimer Disease Biomarkers , 2021, Neurology: Genetics.

[13]  Sheng-Yang M. Goh,et al.  Sex differences in the behavioral variant of frontotemporal dementia: A new window to executive and behavioral reserve , 2021, Alzheimer's & dementia : the journal of the Alzheimer's Association.

[14]  K. Blennow,et al.  Plasma p-tau231: a new biomarker for incipient Alzheimer’s disease pathology , 2021, Acta Neuropathologica.

[15]  N. Mulder,et al.  Repeats expansions in ATXN2, NOP56, NIPA1 and ATXN1 are not associated with ALS in Africans , 2021, IBRO neuroscience reports.

[16]  J. Glass,et al.  Comparison of Phenotypic Characteristics and Prognosis Between Black and White Patients in a Tertiary ALS Clinic , 2020, Neurology.

[17]  K. Blennow,et al.  Plasma Tau and Neurofilament Light in Frontotemporal Lobar Degeneration and Alzheimer Disease , 2020, Neurology.

[18]  D. Galimberti,et al.  Fluid biomarkers in frontotemporal dementia: past, present and future , 2020, Journal of Neurology, Neurosurgery, and Psychiatry.

[19]  Suzanne E. Schindler,et al.  Socioeconomic Status Mediates Racial Differences Seen Using the AT(N) Framework , 2020, Annals of neurology.

[20]  K. Blennow,et al.  Evaluation of a novel immunoassay to detect p-tau Thr217 in the CSF to distinguish Alzheimer disease from other dementias , 2020, Neurology.

[21]  Patrick J. Lao,et al.  Plasma p‐tau181, p‐tau217, and other blood‐based Alzheimer's disease biomarkers in a multi‐ethnic, community study , 2020, medRxiv.

[22]  L. Petrucelli,et al.  C9orf72 poly(GR) aggregation induces TDP-43 proteinopathy , 2020, Science Translational Medicine.

[23]  Michelle K. Cahill,et al.  Neurotoxic microglia promote TDP-43 proteinopathy in progranulin deficiency , 2020, Nature.

[24]  W. M. van der Flier,et al.  Sex differences in CSF biomarkers vary by Alzheimer disease stage and APOE ε4 genotype , 2020, Neurology.

[25]  P. Manganotti,et al.  TDP-43 real-time quaking induced conversion reaction optimization and detection of seeding activity in CSF of amyotrophic lateral sclerosis and frontotemporal dementia patients , 2020, Brain communications.

[26]  K. Blennow,et al.  Diagnostic and prognostic value of serum NfL and p-Tau181 in frontotemporal lobar degeneration , 2020, Journal of Neurology, Neurosurgery, and Psychiatry.

[27]  B. Tannous,et al.  Blood platelet RNA enables the detection of multiple sclerosis , 2020, Multiple sclerosis journal - experimental, translational and clinical.

[28]  K. Kultima,et al.  Altered levels of CSF proteins in patients with FTD, presymptomatic mutation carriers and non-carriers , 2020, Translational Neurodegeneration.

[29]  H. Vinters,et al.  Expanding the Phenotype of Frontotemporal Lobar Degeneration With FUS-Positive Pathology (FTLD-FUS). , 2020, Journal of neuropathology and experimental neurology.

[30]  David T. Jones,et al.  Progressive dysexecutive syndrome due to Alzheimer’s disease: a description of 55 cases and comparison to other phenotypes , 2020, Brain communications.

[31]  K. Blennow,et al.  Blood phosphorylated tau 181 as a biomarker for Alzheimer's disease: a diagnostic performance and prediction modelling study using data from four prospective cohorts , 2020, The Lancet Neurology.

[32]  C. Jack The transformative potential of plasma phosphorylated tau , 2020, The Lancet Neurology.

[33]  P. Worley,et al.  Neuronal pentraxin 2: a synapse-derived CSF biomarker in genetic frontotemporal dementia , 2020, Journal of Neurology, Neurosurgery, and Psychiatry.

[34]  Y. Pijnenburg,et al.  Frontotemporal Dementia: Correlations Between Psychiatric Symptoms and Pathology , 2020, Annals of neurology.

[35]  S. Baez,et al.  Recommendations to distinguish behavioural variant frontotemporal dementia from psychiatric disorders. , 2020, Brain : a journal of neurology.

[36]  G. Escaramís,et al.  A new tetra-plex fluorimetric assay for the quantification of cerebrospinal fluid β-amyloid42, total-tau, phospho-tau and α-synuclein in the differential diagnosis of neurodegenerative dementia , 2020, Journal of Neurology.

[37]  G. Frisoni,et al.  Plasma glial fibrillary acidic protein is raised in progranulin-associated frontotemporal dementia , 2020, Journal of Neurology, Neurosurgery, and Psychiatry.

[38]  K. Blennow,et al.  Diagnostic value of plasma phosphorylated tau181 in Alzheimer’s disease and frontotemporal lobar degeneration , 2020, Nature Medicine.

[39]  Bin Zhang,et al.  Deep Multilayer Brain Proteomics Identifies Molecular Networks in Alzheimer’s Disease Progression , 2020, Neuron.

[40]  B. Boeve,et al.  Tracking disease progression in familial and sporadic frontotemporal lobar degeneration: Recent findings from ARTFL and LEFFTDS , 2020, Alzheimer's & dementia : the journal of the Alzheimer's Association.

[41]  C. Duyckaerts,et al.  Homozygous GRN mutations: new phenotypes and new insights into pathological and molecular mechanisms. , 2019, Brain : a journal of neurology.

[42]  C. Masters,et al.  Cerebrospinal fluid neurofilament light chain is elevated in Niemann–Pick type C compared to psychiatric disorders and healthy controls and may be a marker of treatment response , 2019, The Australian and New Zealand journal of psychiatry.

[43]  Nick C Fox,et al.  Serum neurofilament light chain in genetic frontotemporal dementia: a longitudinal, multicentre cohort study , 2019, The Lancet Neurology.

[44]  H. Vanderstichele,et al.  APP‐derived peptides reflect neurodegeneration in frontotemporal dementia , 2019, Annals of clinical and translational neurology.

[45]  O. Hansson,et al.  Multiplex proteomics identifies novel CSF and plasma biomarkers of early Alzheimer’s disease , 2019, Acta Neuropathologica Communications.

[46]  M. DeMarco,et al.  The diagnostic performance of neurofilament light chain in CSF and blood for Alzheimer's disease, frontotemporal dementia, and amyotrophic lateral sclerosis: A systematic review and meta-analysis , 2019, Alzheimer's & dementia.

[47]  B. Dickerson,et al.  New directions in clinical trials for frontotemporal lobar degeneration: Methods and outcome measures , 2019, Alzheimer's & Dementia.

[48]  P. Hartikainen,et al.  Serum neurofilament light chain is a discriminative biomarker between frontotemporal lobar degeneration and primary psychiatric disorders , 2019, Journal of Neurology.

[49]  I. Mackenzie,et al.  Subcortical TDP-43 pathology patterns validate cortical FTLD-TDP subtypes and demonstrate unique aspects of C9orf72 mutation cases , 2019, Acta Neuropathologica.

[50]  David T. Jones,et al.  Use of the CDR® plus NACC FTLD in mild FTLD: Data from the ARTFL/LEFFTDS consortium , 2019, Alzheimer's & Dementia.

[51]  C. van Broeckhoven,et al.  The Use of Biomarkers and Genetic Screening to Diagnose Frontotemporal Dementia: Evidence and Clinical Implications , 2019, Front. Neurosci..

[52]  K. Blennow,et al.  Diagnostic Value of Cerebrospinal Fluid Neurofilament Light Protein in Neurology: A Systematic Review and Meta-analysis. , 2019, JAMA neurology.

[53]  P. Steinacker,et al.  Biomarkers for diseases with TDP-43 pathology , 2019, Molecular and Cellular Neuroscience.

[54]  C. Schönfeldt-Lecuona,et al.  Neurofilament light chain as a blood biomarker to differentiate psychiatric disorders from behavioural variant frontotemporal dementia. , 2019, Journal of psychiatric research.

[55]  G. Agenbag,et al.  C9orf72 repeat expansions in South Africans with amyotrophic lateral sclerosis , 2019, Journal of the Neurological Sciences.

[56]  J. Hardy,et al.  Genetics and molecular mechanisms of frontotemporal lobar degeneration: an update and future avenues , 2019, Neurobiology of Aging.

[57]  M. Sormani,et al.  Blood neurofilament light as a potential endpoint in Phase 2 studies in MS , 2019, Annals of clinical and translational neurology.

[58]  J. Rohrer,et al.  An update on genetic frontotemporal dementia , 2019, Journal of Neurology.

[59]  M. Grossman,et al.  Clinical Correlates of Alzheimer's Disease Cerebrospinal Fluid Analytes in Primary Progressive Aphasia , 2019, Front. Neurol..

[60]  C. Geula,et al.  Revisiting the utility of TDP-43 immunoreactive (TDP-43-ir) pathology to classify FTLD-TDP subtypes , 2019, Acta Neuropathologica.

[61]  R. Batrla,et al.  Preanalytical sample handling recommendations for Alzheimer's disease plasma biomarkers , 2019, Alzheimer's & dementia.

[62]  M. Grossman,et al.  Novel CSF biomarkers in genetic frontotemporal dementia identified by proteomics , 2019, Annals of clinical and translational neurology.

[63]  Nick C Fox,et al.  Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer’s disease , 2019, Nature Medicine.

[64]  D. Stuss,et al.  Therapeutic trial design for frontotemporal dementia and related disorders , 2018, Journal of Neurology, Neurosurgery, and Psychiatry.

[65]  J. Trojanowski,et al.  Elevated YKL-40 and low sAPPβ:YKL-40 ratio in antemortem cerebrospinal fluid of patients with pathologically confirmed FTLD , 2018, Journal of Neurology, Neurosurgery, and Psychiatry.

[66]  A. Fagan,et al.  Cerebrospinal fluid biomarkers predict frontotemporal dementia trajectory , 2018, Annals of clinical and translational neurology.

[67]  K. Fliessbach,et al.  Serum neurofilament light chain in behavioral variant frontotemporal dementia , 2018, Neurology.

[68]  William T. Hu,et al.  Novel CSF biomarkers to discriminate FTLD and its pathological subtypes , 2018, Annals of clinical and translational neurology.

[69]  K. Blennow,et al.  CSF biomarkers of neuroinflammation and cerebrovascular dysfunction in early Alzheimer disease , 2018, Neurology.

[70]  for the Alzheimer’s Disease Neuroimaging Initiative,et al.  Sex differences in Alzheimer disease — the gateway to precision medicine , 2018, Nature Reviews Neurology.

[71]  B. Boeve,et al.  Corticobasal degeneration with TDP-43 pathology presenting with progressive supranuclear palsy syndrome: a distinct clinicopathologic subtype , 2018, Acta Neuropathologica.

[72]  J. Trojanowski,et al.  A 2-Step Cerebrospinal Algorithm for the Selection of Frontotemporal Lobar Degeneration Subtypes , 2018, JAMA neurology.

[73]  C. van Broeckhoven,et al.  Genotype–phenotype links in frontotemporal lobar degeneration , 2018, Nature Reviews Neurology.

[74]  D. Geschwind,et al.  Poly(GP), neurofilament and grey matter deficits in C9orf72 expansion carriers , 2018, Annals of clinical and translational neurology.

[75]  W. M. van der Flier,et al.  Clinical value of neurofilament and phospho-tau/tau ratio in the frontotemporal dementia spectrum , 2018, Neurology.

[76]  Nick C Fox,et al.  Cerebrospinal fluid in the differential diagnosis of Alzheimer’s disease: clinical utility of an extended panel of biomarkers in a specialist cognitive clinic , 2018, Alzheimer's Research & Therapy.

[77]  C. van Broeckhoven,et al.  Diagnostic value of cerebrospinal fluid tau, neurofilament, and progranulin in definite frontotemporal lobar degeneration , 2018 .

[78]  K. Blennow,et al.  White paper by the Society for CSF Analysis and Clinical Neurochemistry: Overcoming barriers in biomarker development and clinical translation , 2018, Alzheimer's Research & Therapy.

[79]  J. Hodges,et al.  Retiring the term FTDP-17 as MAPT mutations are genetic forms of sporadic frontotemporal tauopathies , 2017, Brain : a journal of neurology.

[80]  J. Galvin,et al.  The social and economic burden of frontotemporal degeneration , 2017, Neurology.

[81]  J. Trojanowski,et al.  Ante mortem cerebrospinal fluid tau levels correlate with postmortem tau pathology in frontotemporal lobar degeneration , 2017, Annals of neurology.

[82]  J. Molinuevo,et al.  CSF sAPPβ, YKL-40, and neurofilament light in frontotemporal lobar degeneration , 2017, Neurology.

[83]  E. Kremmer,et al.  Poly‐GP in cerebrospinal fluid links C9orf72‐associated dipeptide repeat expression to the asymptomatic phase of ALS/FTD , 2017, EMBO molecular medicine.

[84]  Susan L Cotman,et al.  Individuals with progranulin haploinsufficiency exhibit features of neuronal ceroid lipofuscinosis , 2017, Science Translational Medicine.

[85]  William T. Hu,et al.  Poly(Gp) Proteins Are A Useful Pharmacodynamic Marker For C9Orf72-Associated Amyotrophic Lateral Sclerosis , 2017 .

[86]  P. Scheltens,et al.  Cerebrospinal fluid biomarker examination as a tool to discriminate behavioral variant frontotemporal dementia from primary psychiatric disorders , 2017, Alzheimer's & dementia.

[87]  J. Trojanowski,et al.  Expansion of the classification of FTLD-TDP: distinct pathology associated with rapidly progressive frontotemporal degeneration , 2017, Acta Neuropathologica.

[88]  Y. Pijnenburg,et al.  Progranulin Levels in Plasma and Cerebrospinal Fluid in Granulin Mutation Carriers , 2016, Dementia and Geriatric Cognitive Disorders Extra.

[89]  S. Ourselin,et al.  Neurofilament light chain: a biomarker for genetic frontotemporal dementia , 2016, Annals of clinical and translational neurology.

[90]  P. Rabins,et al.  Survival in Frontotemporal Dementia Phenotypes: A Meta-Analysis , 2016, Dementia and Geriatric Cognitive Disorders.

[91]  Y. Pijnenburg,et al.  Novel diagnostic cerebrospinal fluid biomarkers for pathologic subtypes of frontotemporal dementia identified by proteomics , 2016, Alzheimer's & dementia.

[92]  W. M. van der Flier,et al.  Discriminative and prognostic potential of cerebrospinal fluid phosphoTau/tau ratio and neurofilaments for frontotemporal dementia subtypes , 2015, Alzheimer's & dementia.

[93]  J. Molinuevo,et al.  Diagnostic accuracy of behavioral variant frontotemporal dementia consortium criteria (FTDC) in a clinicopathological cohort , 2015, Neuropathology and applied neurobiology.

[94]  M. Weiner,et al.  Cerebrospinal fluid neurogranin: relation to cognition and neurodegeneration in Alzheimer's disease. , 2015, Brain : a journal of neurology.

[95]  N. Kandiah,et al.  Cost Related to Dementia in the Young and the Impact of Etiological Subtype on Cost. , 2015, Journal of Alzheimer's disease : JAD.

[96]  M. Blankenstein,et al.  Facilitating the Validation of Novel Protein Biomarkers for Dementia: An Optimal Workflow for the Development of Sandwich Immunoassays , 2015, Front. Neurol..

[97]  Serggio C. Lanata,et al.  The behavioural variant frontotemporal dementia (bvFTD) syndrome in psychiatry , 2015, Journal of Neurology, Neurosurgery & Psychiatry.

[98]  Murray Grossman,et al.  Frontotemporal lobar degeneration: defining phenotypic diversity through personalized medicine , 2015, Acta Neuropathologica.

[99]  S. Sorbi,et al.  Csf p-tau181/tau ratio as biomarker for TDP pathology in frontotemporal dementia , 2015, Amyotrophic lateral sclerosis & frontotemporal degeneration.

[100]  Magda Tsolaki,et al.  Alzheimer's disease biomarker discovery using SOMAscan multiplexed protein technology , 2014, Alzheimer's & Dementia.

[101]  S. McKnight,et al.  Poly-dipeptides encoded by the C9orf72 repeats bind nucleoli, impede RNA biogenesis, and kill cells , 2014, Science.

[102]  O. Hendrich,et al.  C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins , 2014, Science.

[103]  P. Thompson,et al.  A Systematic Review of Biomarkers for Disease Progression in Alzheimer's Disease , 2014, PloS one.

[104]  K. Rankin,et al.  Satiety-related hormonal dysregulation in behavioral variant frontotemporal dementia , 2014, Neurology.

[105]  L. Grinberg,et al.  Cerebrospinal fluid neurofilament concentration reflects disease severity in frontotemporal degeneration , 2014, Annals of neurology.

[106]  Chadwick M. Hales,et al.  Reduced CSF p-Tau181 to Tau ratio is a biomarker for FTLD-TDP , 2013, Neurology.

[107]  A. Isaacs,et al.  C9orf72 frontotemporal lobar degeneration is characterised by frequent neuronal sense and antisense RNA foci , 2013, Acta Neuropathologica.

[108]  Kevin F. Bieniek,et al.  Antisense transcripts of the expanded C9ORF72 hexanucleotide repeat form nuclear RNA foci and undergo repeat-associated non-ATG translation in c9FTD/ALS , 2013, Acta Neuropathologica.

[109]  S. Lorenzl,et al.  Dipeptide repeat protein pathology in C9ORF72 mutation cases: clinico-pathological correlations , 2013, Acta Neuropathologica.

[110]  M. Mesulam Primary progressive aphasia and the language network , 2013, Neurology.

[111]  C. Nilsson,et al.  Cerebrospinal fluid neurofilament light chain protein levels in subtypes of frontotemporal dementia , 2013, BMC Neurology.

[112]  D. Neary,et al.  Sensitivity and specificity of FTDC criteria for behavioral variant frontotemporal dementia , 2013, Neurology.

[113]  J. Gilbert,et al.  Repeat expansions in the C9ORF72 gene contribute to Alzheimer's disease in Caucasians , 2013, Neurobiology of Aging.

[114]  J. Diehl-Schmid,et al.  The epidemiology of frontotemporal dementia , 2013, International review of psychiatry.

[115]  Mark Hallett,et al.  Criteria for the diagnosis of corticobasal degeneration , 2013, Neurology.

[116]  J. Clarimón,et al.  Analysis of the C9orf72 Gene in Patients with Amyotrophic Lateral Sclerosis in Spain and Different Populations Worldwide , 2013, Human mutation.

[117]  K. Blennow,et al.  Development and assessment of sensitive immuno‐PCR assays for the quantification of cerebrospinal fluid three‐ and four‐repeat tau isoforms in tauopathies , 2012, Journal of neurochemistry.

[118]  J. Molinuevo,et al.  Recommendations to standardize preanalytical confounding factors in Alzheimer's and Parkinson's disease cerebrospinal fluid biomarkers: an update. , 2012, Biomarkers in medicine.

[119]  Murray Grossman,et al.  CSF biomarkers cutoffs: the importance of coincident neuropathological diseases , 2012, Acta Neuropathologica.

[120]  C. Jack,et al.  Neuroimaging signatures of frontotemporal dementia genetics: C9ORF72, tau, progranulin and sporadics , 2012, Brain : a journal of neurology.

[121]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[122]  Nick C Fox,et al.  Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. , 2011, Brain : a journal of neurology.

[123]  Giovanni B. Frisoni,et al.  The Alzheimer’s Association external quality control program for cerebrospinal fluid biomarkers , 2011, Alzheimer's & Dementia.

[124]  J. Trojanowski,et al.  A harmonized classification system for FTLD-TDP pathology , 2011, Acta Neuropathologica.

[125]  J. Ule,et al.  Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. , 2011, Nature neuroscience.

[126]  B. Miller,et al.  Classification of primary progressive aphasia and its variants , 2011, Neurology.

[127]  K. Rankin,et al.  The diagnostic challenge of psychiatric symptoms in neurodegenerative disease: rates of and risk factors for prior psychiatric diagnosis in patients with early neurodegenerative disease. , 2011, The Journal of clinical psychiatry.

[128]  N. Cairns,et al.  Distinct pathological subtypes of FTLD-FUS , 2011, Acta Neuropathologica.

[129]  Chengjie Xiong,et al.  YKL-40: A Novel Prognostic Fluid Biomarker for Preclinical Alzheimer's Disease , 2010, Biological Psychiatry.

[130]  J. V. van Swieten,et al.  Frequency of ubiquitin and FUS-positive, TDP-43-negative frontotemporal lobar degeneration , 2009, Journal of Neurology.

[131]  John Q. Trojanowski,et al.  Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update , 2009, Acta Neuropathologica.

[132]  Nick C Fox,et al.  The heritability and genetics of frontotemporal lobar degeneration , 2009, Neurology.

[133]  H. Kretzschmar,et al.  A new subtype of frontotemporal lobar degeneration with FUS pathology. , 2009, Brain : a journal of neurology.

[134]  John L. Robinson,et al.  Clinical and pathological continuum of multisystem TDP-43 proteinopathies. , 2009, Archives of neurology.

[135]  M. Freedman,et al.  Consensus criteria for the diagnosis of frontotemporal cognitive and behavioural syndromes in amyotrophic lateral sclerosis , 2009, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.

[136]  B. Boeve Links Between Frontotemporal Lobar Degeneration, Corticobasal Degeneration, Progressive Supranuclear Palsy, and Amyotrophic Lateral Sclerosis , 2007, Alzheimer disease and associated disorders.

[137]  Robert H. Brown,et al.  Increase in the relative expression of tau with four microtubule binding repeat regions in frontotemporal lobar degeneration and progressive supranuclear palsy brains , 2007, Acta Neuropathologica.

[138]  J. Schneider,et al.  Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration , 2007, Acta Neuropathologica.

[139]  Y. Pijnenburg,et al.  CSF neurofilament proteins in the differential diagnosis of dementia , 2007, Journal of Neurology, Neurosurgery & Psychiatry.

[140]  S. Melquist,et al.  Mutations in progranulin are a major cause of ubiquitin-positive frontotemporal lobar degeneration. , 2006, Human molecular genetics.

[141]  Bruce L. Miller,et al.  Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis , 2006, Science.

[142]  S. Melquist,et al.  Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17 , 2006, Nature.

[143]  Jennifer Farmer,et al.  Frontotemporal dementia: Clinicopathological correlations , 2006, Annals of neurology.

[144]  P. Lantos,et al.  Office of Rare Diseases Neuropathologic Criteria for Corticobasal Degeneration , 2002, Journal of neuropathology and experimental neurology.

[145]  Katharina Buerger,et al.  Large‐scale, multicenter study of cerebrospinal fluid tau protein phosphorylated at serine 199 for the antemortem diagnosis of Alzheimer's disease , 2001, Annals of neurology.

[146]  K. Blennow,et al.  Cytoskeleton proteins in CSF distinguish frontotemporal dementia from AD , 2000, Neurology.

[147]  Ronald C. Petersen,et al.  Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17 , 1998, Nature.

[148]  M. Farrer,et al.  Localization of frontotemporal dementia with parkinsonism in an Australian kindred to chromosome 17q21–22 , 1997, Annals of neurology.

[149]  M. Hallett,et al.  Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome) , 1996, Neurology.

[150]  C. Teunissen,et al.  Guidelines for CSF Processing and Biobanking: Impact on the Identification and Development of Optimal CSF Protein Biomarkers. , 2019, Methods in molecular biology.

[151]  P. Nilsson,et al.  Highly multiplexed antibody suspension bead arrays for plasma protein profiling. , 2013, Methods in molecular biology.

[152]  J. Pariente,et al.  Definite behavioral variant of frontotemporal dementia with C9ORF72 expansions despite positive Alzheimer's disease cerebrospinal fluid biomarkers. , 2012, Journal of Alzheimer's disease : JAD.

[153]  A. Vighetto,et al.  Decreased sAβPPβ, Aβ38, and Aβ40 cerebrospinal fluid levels in frontotemporal dementia. , 2011, Journal of Alzheimer's disease : JAD.

[154]  E. Buratti,et al.  Multiple roles of TDP-43 in gene expression, splicing regulation, and human disease. , 2008, Frontiers in bioscience : a journal and virtual library.

[155]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .