Modeling the first instant of the interaction between a liquid and a plasma jet with a compressible approach

Abstract In this work, the numerical simulation of the interaction between a liquid jet and a plasma flow is investigated for understanding and predicting the physical parameters involved in the liquid plasma spraying process. This process is used for the production of high performance coatings to obtain thinner deposits (

[1]  Stéphane Vincent,et al.  Contribution to the modeling of the interaction between a plasma flow and a liquid jet , 2009 .

[2]  Isao Kataoka,et al.  Local instant formulation of two-phase flow , 1986 .

[3]  Jean-Paul Caltagirone,et al.  From DC Time-Dependent Thermal Plasma Generation to Suspension Plasma-Spraying Interactions , 2009 .

[4]  Thierry Chartier,et al.  Suspension and solution plasma spraying of finely structured layers: potential application to SOFCs , 2007 .

[5]  Stéphane Vincent,et al.  Eulerian-Lagrangian multiscale methods for solving scalar equations - Application to incompressible two-phase flows , 2010, J. Comput. Phys..

[6]  J. Brackbill,et al.  A continuum method for modeling surface tension , 1992 .

[7]  R. Fedkiw,et al.  A numerical method for two-phase flow consisting of separate compressible and incompressible regions , 2000 .

[8]  G. Tryggvason,et al.  A front-tracking method for viscous, incompressible, multi-fluid flows , 1992 .

[9]  Theo G. Theofanous,et al.  High-fidelity interface tracking in compressible flows: Unlimited anchored adaptive level set , 2007, J. Comput. Phys..

[10]  S. Osher,et al.  Level set methods: an overview and some recent results , 2001 .

[11]  R. Scardovelli,et al.  A mixed markers and volume-of-fluid method for the reconstruction and advection of interfaces in two-phase and free-boundary flows , 2003 .

[12]  Peter E. Raad,et al.  The three-dimensional Eulerian-Lagrangian marker and micro cell method for the simulation of free surface flows , 2005 .

[13]  P. Fauchais,et al.  Influence of Plasma Instabilities in Ceramic Suspension Plasma Spraying , 2007 .

[14]  S. Zaleski,et al.  DIRECT NUMERICAL SIMULATION OF FREE-SURFACE AND INTERFACIAL FLOW , 1999 .

[15]  J. Caltagirone,et al.  International Journal for Numerical Methods in Fluids Efficient Solving Method for Unsteady Incompressible Interfacial Flow Problems , 2022 .

[16]  Eiji Ishii,et al.  Hybrid Particle/Grid Method for Predicting Motion of Micro- and Macrofree Surfaces , 2006 .

[17]  J. Caltagirone,et al.  A One-Cell Local Multigrid Method for Solving Unsteady Incompressible Multiphase Flows , 2000 .

[18]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[19]  W. Rider,et al.  Reconstructing Volume Tracking , 1998 .

[20]  Baki M. Cetegen,et al.  Thermal Barrier Coatings Made by the Solution Precursor Plasma Spray Process , 2008 .

[21]  A. Vardelle,et al.  Modelling of the plasma spray process with liquid feedstock injection , 2008 .

[22]  L. Rayleigh On the Capillary Phenomena of Jets , 1879 .

[23]  D. Juric,et al.  A front-tracking method for the computations of multiphase flow , 2001 .

[24]  P. Fauchais,et al.  Phenomena Involved in Suspension Plasma Spraying Part 1: Suspension Injection and Behavior , 2006 .

[25]  J. López,et al.  An improved PLIC-VOF method for tracking thin fluid structures in incompressible two-phase flows , 2005 .

[26]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[27]  Pierre Sagaut,et al.  Numerical simulation of phase separation and a priori two-phase LES filtering , 2008 .

[28]  Takashi Yabe,et al.  Unified Numerical Procedure for Compressible and Incompressible Fluid , 1991 .

[29]  R. Reitz,et al.  An analysis of the distortion and breakup mechanisms of high speed liquid drops , 1997 .