The evolution of assembly bias

We examine the evolution of assembly bias using a semi-analytical model of galaxy formation implemented in the Millennium-WMAP7 N-body simulation. We consider fixed number density galaxy samples ranked by stellar mass or star formation rate. We investigate how the clustering of haloes and their galaxy content depend on halo formation time and concentration, and how these relationships evolve with redshift. At z = 0 the dependences of halo clustering on halo concentration and formation time are similar. At higher redshift, halo assembly bias weakens for haloes selected by age, and reverses and increases for haloes selected by concentration, consistent with previous studies. The variation of the halo occupation with concentration and formation time is also similar at z = 0 and changes at higher redshifts. Here, the occupancy variation with halo age stays mostly constant with redshift but decreases for concentration. Finally, we look at the evolution of assembly bias reflected in the galaxy distribution by examining the galaxy correlation functions relative to those of shuffled galaxy samples that remove the occupancy variation. This correlation functions ratio monotonically decreases with larger redshift and for lower number density samples, going below unity in some cases, leading to reduced galaxy clustering. While the halo occupation functions themselves vary, the assembly bias trends are similar whether selecting galaxies by stellar mass or star formation rate. Our results provide further insight into the origin and evolution of assembly bias. Our extensive occupation function measurements and fits are publicly available and can be used to create realistic mock catalogues.

[1]  A. Robotham,et al.  Shark: introducing an open source, free, and flexible semi-analytic model of galaxy formation , 2018, Monthly Notices of the Royal Astronomical Society.

[2]  Manodeep Sinha,et al.  Connecting and dissecting galaxies’ angular momenta and neutral gas in a hierarchical universe: cue Dark Sage , 2018, Monthly Notices of the Royal Astronomical Society.

[3]  J. Tinker,et al.  Halo histories versus galaxy properties at z = 0 II: large-scale galactic conformity , 2018 .

[4]  P. Norberg,et al.  The impact of assembly bias on the halo occupation in hydrodynamical simulations , 2018, Monthly Notices of the Royal Astronomical Society.

[5]  Zheng Zheng,et al.  Dependence of halo bias and kinematics on assembly variables , 2017, Monthly Notices of the Royal Astronomical Society.

[6]  Durham,et al.  The host dark matter haloes of [O II] emitters at 0.5 < z < 1.5 , 2017, 1708.07628.

[7]  C. Baugh,et al.  The Impact of Assembly Bias on the Galaxy Content of Dark Matter Halos , 2017, 1706.07871.

[8]  Yale,et al.  The immitigable nature of assembly bias: the impact of halo definition on assembly bias , 2017, 1705.04327.

[9]  R. Wechsler,et al.  Beyond assembly bias: exploring secondary halo biases for cluster-size haloes , 2017, 1705.03888.

[10]  V. Gonzalez-Perez,et al.  Galactic conformity measured in semi-analytic models , 2017, 1703.10175.

[11]  A. Hopkins,et al.  A KiDS weak lensing analysis of assembly bias in GAMA galaxy groups , 2017, 1703.06657.

[12]  S. Lilly,et al.  On the evidence for large-scale galactic conformity in the local Universe , 2017, 1702.08460.

[13]  S. White,et al.  Assembly bias and splashback in galaxy clusters , 2017, 1702.01682.

[14]  N. Padmanabhan,et al.  Halo assembly bias from Separate Universe simulations , 2016, 1612.02833.

[15]  E. Rykoff,et al.  On the Level of Cluster Assembly Bias in SDSS , 2016, 1611.00366.

[16]  C. Baugh,et al.  The evolution of the galaxy content of dark matter haloes , 2016, 1607.06154.

[17]  Simon J. Mutch,et al.  SEMI-ANALYTIC GALAXY EVOLUTION (SAGE): MODEL CALIBRATION AND BASIC RESULTS , 2016, 1601.04709.

[18]  Erik Tollerud,et al.  Introducing decorated HODs: modelling assembly bias in the galaxy–halo connection , 2015, 1512.03050.

[19]  Qi Guo,et al.  Galaxies in the EAGLE hydrodynamical simulation and in the Durham and Munich semi-analytical models , 2015, 1512.00015.

[20]  Perth,et al.  A unified multiwavelength model of galaxy formation , 2015, 1509.08473.

[21]  R. Mandelbaum,et al.  Mapping stellar content to dark matter haloes – II. Halo mass is the main driver of galaxy quenching , 2015, 1509.06758.

[22]  Andrew P. Hearin,et al.  Connecting massive galaxies to dark matter haloes in BOSS - I. Is galaxy colour a stochastic process in high-mass haloes? , 2015, 1509.00482.

[23]  J. Schaye,et al.  Subhalo abundance matching and assembly bias in the EAGLE simulation , 2015, 1507.01948.

[24]  V. Springel,et al.  An analysis of the evolving comoving number density of galaxies in hydrodynamical simulations , 2015, 1507.01942.

[25]  Zheng Zheng,et al.  Accurate and efficient halo-based galaxy clustering modelling with simulations , 2015, 1506.07523.

[26]  S. More,et al.  Evidence of Halo Assembly Bias in Massive Clusters. , 2015, Physical review letters.

[27]  Andrew P. Hearin,et al.  Assessing Colour-dependent Occupation Statistics Inferred from Galaxy Group Catalogues , 2015, 1505.04798.

[28]  R. Mandelbaum,et al.  ON DETECTING HALO ASSEMBLY BIAS WITH GALAXY POPULATIONS , 2015, 1504.07632.

[29]  C. Conselice,et al.  Tracing galaxy populations through cosmic time: a critical test of methods for connecting the same galaxies between different redshifts at z < 3 , 2015, 1504.05583.

[30]  C. Baugh,et al.  The galaxy - dark matter halo connection: which galaxy properties are correlated with the host halo mass? , 2015, 1502.06614.

[31]  S. White,et al.  Galaxy formation in the Planck cosmology – I. Matching the observed evolution of star formation rates, colours and stellar masses , 2014, 1410.0365.

[32]  Andrew P. Hearin,et al.  Beyond halo mass: galactic conformity as a smoking gun of central galaxy assembly bias , 2014, 1404.6524.

[33]  Carlton M. Baugh,et al.  How sensitive are predicted galaxy luminosities to the choice of stellar population synthesis model , 2013, 1309.7057.

[34]  W. Percival,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: mock galaxy catalogues for the low-redshift sample , 2014, 1401.4171.

[35]  S. Cole,et al.  N-body dark matter haloes with simple hierarchical histories , 2013, 1311.6649.

[36]  Andrew P. Hearin,et al.  Galaxy assembly bias: a significant source of systematic error in the galaxy–halo relationship , 2013, 1311.1818.

[37]  B. Andrews,et al.  EXPLORING THE CHEMICAL LINK BETWEEN LOCAL ELLIPTICALS AND THEIR HIGH-REDSHIFT PROGENITORS , 2013, 1310.7020.

[38]  G. Lucia,et al.  Detection of galaxy assembly bias , 2013, 1305.0350.

[39]  C. Baugh,et al.  How robust are predictions of galaxy clustering , 2013, 1301.3497.

[40]  S. White,et al.  Simulations of the galaxy population constrained by observations from z = 3 to the present day: implications for galactic winds and the fate of their ejecta , 2012, 1212.1717.

[41]  N. Padilla,et al.  The nature of assembly bias – II. Halo spin , 2012, 1207.4476.

[42]  C. Baugh,et al.  The clustering of Hα emitters at z = 2.23 from HiZELS , 2012 .

[43]  S. White,et al.  Galaxy formation in WMAP1 and WMAP7 cosmologies , 2012, 1206.0052.

[44]  N. Padilla,et al.  The nature of assembly bias – III. Observational properties , 2011, 1110.6174.

[45]  Y. Mellier,et al.  Galaxy clustering in the CFHTLS-Wide: the changing relationship between galaxies and haloes since z ~ 1.2 , 2011, 1107.0616.

[46]  N. Padilla,et al.  The nature of assembly bias – I. Clues from a ΛCDM cosmology , 2010, 1011.1498.

[47]  A. Benson Galacticus: A Semi-Analytic Model of Galaxy Formation , 2010, 1008.1786.

[48]  Santiago,et al.  Clustering and descendants of MUSYC galaxies at z < 1.5 , 2010, 1006.5645.

[49]  Andrew J. Benson,et al.  Galaxy formation theory , 2010, 1006.5394.

[50]  G. Kauffmann,et al.  Erratum: From dwarf spheroidals to cD galaxies: simulating the galaxy population in a ΛCDM cosmology , 2010, 1006.0106.

[51]  R. Nichol,et al.  GALAXY CLUSTERING IN THE COMPLETED SDSS REDSHIFT SURVEY: THE DEPENDENCE ON COLOR AND LUMINOSITY , 2010, 1005.2413.

[52]  Britton D. Smith,et al.  HOW WELL DO COSMOLOGICAL SIMULATIONS REPRODUCE INDIVIDUAL HALO PROPERTIES? , 2010, 1001.5037.

[53]  J. Newman,et al.  Galaxy assembly bias on the red sequence , 2009, 0910.0245.

[54]  Durham,et al.  The clustering of Lyα emitters in a ΛCDM Universe , 2008, 0807.3447.

[55]  C. Lagos,et al.  Effects of AGN feedback on ΛCDM galaxies , 2008, 0805.1930.

[56]  Zheng Zheng,et al.  Environmental Effects on Real-Space and Redshift-Space Galaxy Clustering , 2007, 0712.3570.

[57]  P. Norberg,et al.  Void Statistics in Large Galaxy Redshift Surveys: Does Halo Occupation of Field Galaxies Depend on Environment? , 2007, 0707.3445.

[58]  P. Thomas,et al.  The recycling of gas and metals in galaxy formation: predictions of a dynamical feedback model , 2007, astro-ph/0701407.

[59]  S. White,et al.  Assembly bias in the clustering of dark matter haloes , 2006, astro-ph/0611921.

[60]  Y. Suto,et al.  The Dependence of Dark Halo Clustering on Formation Epoch and Concentration Parameter , 2006, astro-ph/0610099.

[61]  C. Baugh,et al.  A primer on hierarchical galaxy formation: the semi-analytical approach , 2006, astro-ph/0610031.

[62]  M. Blanton,et al.  What Aspects of Galaxy Environment Matter? , 2006, astro-ph/0608353.

[63]  G. Lucia,et al.  The hierarchical formation of the brightest cluster galaxies , 2006, astro-ph/0606519.

[64]  S. White,et al.  Halo assembly bias and its effects on galaxy clustering , 2006, astro-ph/0605636.

[65]  Ravi K. Sheth U. Pittsburgh,et al.  The environmental dependence of galaxy clustering in the Sloan Digital Sky Survey , 2006, astro-ph/0601407.

[66]  J. Frieman,et al.  Percolation Galaxy Groups and Clusters in the SDSS Redshift Survey: Identification, Catalogs, and the Multiplicity Function , 2006, astro-ph/0601346.

[67]  Zheng Zheng,et al.  The Dependence of the Occupation of Galaxies on the Halo Formation Time , 2006, astro-ph/0601120.

[68]  Oxford,et al.  Breaking the hierarchy of galaxy formation , 2005, astro-ph/0511338.

[69]  G. Kauffmann,et al.  The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colour , 2005, astro-ph/0508046.

[70]  S. White,et al.  The age dependence of halo clustering , 2005, astro-ph/0506510.

[71]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[72]  H. Mo,et al.  Galaxy occupation statistics of dark matter haloes: observational results , 2004, astro-ph/0410114.

[73]  J. Frieman,et al.  The Luminosity and Color Dependence of the Galaxy Correlation Function , 2004, astro-ph/0408569.

[74]  R. Davé,et al.  Theoretical Models of the Halo Occupation Distribution: Separating Central and Satellite Galaxies , 2004, astro-ph/0408564.

[75]  S. White,et al.  The subhalo populations of ΛCDM dark haloes , 2004, astro-ph/0404589.

[76]  Padova,et al.  On the environmental dependence of halo formation , 2004, astro-ph/0402237.

[77]  Simon D. M. White,et al.  Chemical enrichment of the intracluster and intergalactic medium in a hierarchical galaxy formation model , 2003, astro-ph/0310268.

[78]  Potsdam,et al.  The Dark Side of the Halo Occupation Distribution , 2003, astro-ph/0308519.

[79]  C. Baugh,et al.  The Halo Occupation Distribution and the Physics of Galaxy Formation , 2002, astro-ph/0212357.

[80]  R. Sheth,et al.  Halo Models of Large Scale Structure , 2002, astro-ph/0206508.

[81]  D. Weinberg,et al.  The Halo Occupation Distribution: Toward an Empirical Determination of the Relation between Galaxies and Mass , 2001, astro-ph/0109001.

[82]  Padova,et al.  Populating a cluster of galaxies - I. Results at z=0 , 2000, astro-ph/0012055.

[83]  A. Dekel,et al.  A Universal Angular Momentum Profile for Galactic Halos , 2000, astro-ph/0011001.

[84]  J. Peacock,et al.  Halo occupation numbers and galaxy bias , 2000, astro-ph/0005010.

[85]  G. Kauffmann,et al.  Clustering of galaxies in a hierarchical universe - I. Methods and results at z=0 , 1998, astro-ph/9805283.

[86]  G. Kauffmann,et al.  Environmental influences on dark matter haloes and consequences for the galaxies within them , 1997, astro-ph/9710125.

[87]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.

[88]  C. Frenk,et al.  A recipe for galaxy formation , 1994, astro-ph/9402001.

[89]  S. Cole,et al.  Merger rates in hierarchical models of galaxy formation – II. Comparison with N-body simulations , 1994, astro-ph/9402069.

[90]  S. D. M. White,et al.  The merging history of dark matter haloes in a hierarchical universe , 1993 .

[91]  J. R. Bond,et al.  Excursion set mass functions for hierarchical Gaussian fluctuations , 1991 .

[92]  G. Efstathiou,et al.  The evolution of large-scale structure in a universe dominated by cold dark matter , 1985 .

[93]  M. Rees,et al.  Core condensation in heavy halos: a two-stage theory for galaxy formation and clustering , 1978 .

[94]  William H. Press,et al.  Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation , 1974 .

[95]  U. Chicago,et al.  The Astrophysical Journal, in press Preprint typeset using L ATEX style emulateapj v. 6/22/04 THE DEPENDENCE OF HALO CLUSTERING ON HALO FORMATION HISTORY, CONCENTRATION, AND OCCUPATION , 2005 .