Global Schrödinger maps in dimensions $d≥ 2$: Small data in the critical Sobolev spaces
暂无分享,去创建一个
Carlos E. Kenig | Daniel Tataru | Alexandru D. Ionescu | C. Kenig | A. Ionescu | D. Tataru | I. Bejenaru | Ioan Bejenaru
[1] Terence Tao. Global Regularity of Wave Maps¶II. Small Energy in Two Dimensions , 2001 .
[2] Claude Bardos,et al. On the continuous limit for a system of classical spins , 1986 .
[3] D. Tataru,et al. A Priori Bounds for the 1D Cubic NLS in Negative Sobolev Spaces , 2006, math/0612717.
[4] Luis Vega,et al. Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations , 1998 .
[5] C. Kenig,et al. Well‐posedness and scattering results for the generalized korteweg‐de vries equation via the contraction principle , 1993 .
[6] C. Kenig,et al. Low-regularity Schrödinger maps, II: global well-posedness in dimensions d ≥ 3 , 2007 .
[7] D. Tataru. Local and global results for wave maps I , 1998 .
[8] C. Kenig,et al. Low-regularity Schrödinger maps , 2006, Differential and Integral Equations.
[9] J. Krieger. GLOBAL REGULARITY OF WAVE MAPS FROM , 2006 .
[10] Herbert Koch,et al. Well-posedness and scattering for the KP-II equation in a critical space , 2007, 0708.2011.
[11] Luis Vega,et al. Schrodinger Maps and Their Associated Frame Systems , 2006 .
[12] A. Soyeur. The Cauchy problem for the Ishimori equations , 1992 .
[13] A. Kiselev,et al. Maximal Functions Associated to Filtrations , 2001 .
[14] W. Ding,et al. Local Schrödinger flow into Kähler manifolds , 2001 .
[15] Sergiu Klainerman,et al. Space-time estimates for null forms and the local existence theorem , 1993 .
[16] Daniel Tataru,et al. Rough solutions for the wave maps equation , 2005 .
[17] D. Tataru. On global existence and scattering for the wave maps equation , 2001 .
[18] D. Tataru,et al. Global Wellposedness in the Energy Space for the Maxwell-Schrödinger System , 2007, 0712.0098.
[19] C. Kenig,et al. Well-posedness and local smoothing of solutions of Schrodinger equations , 2005 .
[20] C. Kenig,et al. Weighted Low-Regularity Solutions of the KP-I Initial Value Problem , 2007 .
[21] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[22] I. Bejenaru,et al. On Schrödinger maps , 2008 .
[23] T. Tao. Nonlinear dispersive equations : local and global analysis , 2006 .
[24] C. Kenig,et al. The Cauchy problem for the hyperbolic–elliptic Ishimori system and Schrödinger maps , 2005 .
[25] Sergiu Klainerman,et al. Remark on the optimal regularity for equations of wave maps type , 1997 .
[26] Carlos Kenig,et al. Global well-posedness of the Benjamin–Ono equation in low-regularity spaces , 2005 .
[27] D. Ter Haar,et al. Collected Papers of L. D. Landau , 1965 .
[28] Ding Weiyue Wang Youde,et al. Local Schrödinger flow into Kähler manifolds , 2001 .
[29] Asymptotic stability of harmonic maps under the Schr , 2006, math/0609591.
[30] H. McGahagan. An Approximation Scheme for Schrödinger Maps , 2007 .
[31] I. Bejenaru. Global Results for Schrödinger Maps in Dimensions n ≥ 3 , 2008 .
[32] Global behaviour of nonlinear dispersive and wave equations , 2006, math/0608293.
[33] C. Kenig,et al. On the Initial Value Problem for the Ishimori System , 2000 .
[34] 小澤 徹,et al. Nonlinear dispersive equations , 2006 .
[35] J. Kato,et al. Existence and uniqueness of the solution to the modified Schrödinger map , 2005 .
[36] Karen K. Uhlenbeck,et al. On the well-posedness of the wave map problem in high dimensions , 2001, math/0109212.
[37] Dispersive estimates for principally normal pseudodifferential operators , 2004, math/0401234.
[38] J. Kato,et al. Uniqueness of the Modified Schrödinger Map in H 3/4+ϵ(ℝ2) , 2007 .
[39] Global results for Schr\"odinger Maps in dimensions $n \geq 3$ , 2006, math/0605315.
[40] N. Papanicolaou,et al. Dynamics of magnetic vortices , 1991 .
[41] Jalal Shatah,et al. The Cauchy problem for wave maps , 2002 .
[42] Luis Vega,et al. Small solutions to nonlinear Schrödinger equations , 1993 .
[43] T. Tao. Geometric renormalization of large energy wave maps , 2004, math/0411354.
[44] J. Krieger. Global Regularity of Wave Maps from R2+1 to H2. Small Energy , 2004 .
[45] Carlos E. Kenig,et al. Global existence and uniqueness of Schrödinger maps in dimensions d... 4 , 2007 .
[46] Felipe Linares,et al. On the Davey-Stewartson systems , 1993 .
[47] Luis Vega,et al. The Cauchy problem for quasi-linear Schrödinger equations , 2004 .
[48] Robert S. Strichartz,et al. Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations , 1977 .
[49] Global wellposedness of the modified Benjamin-Ono equation with initial data in H1/2 , 2005, math/0509573.