Global Schrödinger maps in dimensions $d≥ 2$: Small data in the critical Sobolev spaces

We consider the Schrodinger map initial-value problem ¤ @ t = on R d R; (0) = 0; where : R d R! S 2 ,! R 3 is a smooth function. In all dimensions d 2, we prove that the Schrodinger map initial-value problem admits a unique global smooth solution 2 C(R : H 1 Q ), Q2 S 2 , provided that the data 02 H 1 Q is smooth and satises the smallness condition

[1]  Terence Tao Global Regularity of Wave Maps¶II. Small Energy in Two Dimensions , 2001 .

[2]  Claude Bardos,et al.  On the continuous limit for a system of classical spins , 1986 .

[3]  D. Tataru,et al.  A Priori Bounds for the 1D Cubic NLS in Negative Sobolev Spaces , 2006, math/0612717.

[4]  Luis Vega,et al.  Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations , 1998 .

[5]  C. Kenig,et al.  Well‐posedness and scattering results for the generalized korteweg‐de vries equation via the contraction principle , 1993 .

[6]  C. Kenig,et al.  Low-regularity Schrödinger maps, II: global well-posedness in dimensions d ≥  3 , 2007 .

[7]  D. Tataru Local and global results for wave maps I , 1998 .

[8]  C. Kenig,et al.  Low-regularity Schrödinger maps , 2006, Differential and Integral Equations.

[9]  J. Krieger GLOBAL REGULARITY OF WAVE MAPS FROM , 2006 .

[10]  Herbert Koch,et al.  Well-posedness and scattering for the KP-II equation in a critical space , 2007, 0708.2011.

[11]  Luis Vega,et al.  Schrodinger Maps and Their Associated Frame Systems , 2006 .

[12]  A. Soyeur The Cauchy problem for the Ishimori equations , 1992 .

[13]  A. Kiselev,et al.  Maximal Functions Associated to Filtrations , 2001 .

[14]  W. Ding,et al.  Local Schrödinger flow into Kähler manifolds , 2001 .

[15]  Sergiu Klainerman,et al.  Space-time estimates for null forms and the local existence theorem , 1993 .

[16]  Daniel Tataru,et al.  Rough solutions for the wave maps equation , 2005 .

[17]  D. Tataru On global existence and scattering for the wave maps equation , 2001 .

[18]  D. Tataru,et al.  Global Wellposedness in the Energy Space for the Maxwell-Schrödinger System , 2007, 0712.0098.

[19]  C. Kenig,et al.  Well-posedness and local smoothing of solutions of Schrodinger equations , 2005 .

[20]  C. Kenig,et al.  Weighted Low-Regularity Solutions of the KP-I Initial Value Problem , 2007 .

[21]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[22]  I. Bejenaru,et al.  On Schrödinger maps , 2008 .

[23]  T. Tao Nonlinear dispersive equations : local and global analysis , 2006 .

[24]  C. Kenig,et al.  The Cauchy problem for the hyperbolic–elliptic Ishimori system and Schrödinger maps , 2005 .

[25]  Sergiu Klainerman,et al.  Remark on the optimal regularity for equations of wave maps type , 1997 .

[26]  Carlos Kenig,et al.  Global well-posedness of the Benjamin–Ono equation in low-regularity spaces , 2005 .

[27]  D. Ter Haar,et al.  Collected Papers of L. D. Landau , 1965 .

[28]  Ding Weiyue Wang Youde,et al.  Local Schrödinger flow into Kähler manifolds , 2001 .

[29]  Asymptotic stability of harmonic maps under the Schr , 2006, math/0609591.

[30]  H. McGahagan An Approximation Scheme for Schrödinger Maps , 2007 .

[31]  I. Bejenaru Global Results for Schrödinger Maps in Dimensions n ≥ 3 , 2008 .

[32]  Global behaviour of nonlinear dispersive and wave equations , 2006, math/0608293.

[33]  C. Kenig,et al.  On the Initial Value Problem for the Ishimori System , 2000 .

[34]  小澤 徹,et al.  Nonlinear dispersive equations , 2006 .

[35]  J. Kato,et al.  Existence and uniqueness of the solution to the modified Schrödinger map , 2005 .

[36]  Karen K. Uhlenbeck,et al.  On the well-posedness of the wave map problem in high dimensions , 2001, math/0109212.

[37]  Dispersive estimates for principally normal pseudodifferential operators , 2004, math/0401234.

[38]  J. Kato,et al.  Uniqueness of the Modified Schrödinger Map in H 3/4+ϵ(ℝ2) , 2007 .

[39]  Global results for Schr\"odinger Maps in dimensions $n \geq 3$ , 2006, math/0605315.

[40]  N. Papanicolaou,et al.  Dynamics of magnetic vortices , 1991 .

[41]  Jalal Shatah,et al.  The Cauchy problem for wave maps , 2002 .

[42]  Luis Vega,et al.  Small solutions to nonlinear Schrödinger equations , 1993 .

[43]  T. Tao Geometric renormalization of large energy wave maps , 2004, math/0411354.

[44]  J. Krieger Global Regularity of Wave Maps from R2+1 to H2. Small Energy , 2004 .

[45]  Carlos E. Kenig,et al.  Global existence and uniqueness of Schrödinger maps in dimensions d... 4 , 2007 .

[46]  Felipe Linares,et al.  On the Davey-Stewartson systems , 1993 .

[47]  Luis Vega,et al.  The Cauchy problem for quasi-linear Schrödinger equations , 2004 .

[48]  Robert S. Strichartz,et al.  Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations , 1977 .

[49]  Global wellposedness of the modified Benjamin-Ono equation with initial data in H1/2 , 2005, math/0509573.