Reduced-order Kalman filtering for time-varying systems

Since the classical Kalman filter provides optimal least- squares estimates of all of the states of a linear time-varying system, there is longstanding interest in obtaining simpler filters that estimate only a subset of states. This objective is of particular interest when the system order is extremely large, which occurs for systems arising from discretized partial differential equations.

[1]  P. Ioannou,et al.  State Estimation Using a Reduced-Order Kalman Filter , 2001 .

[2]  J. M. Lewis,et al.  Dynamic Data Assimilation: A Least Squares Approach , 2006 .

[3]  D. Bernstein,et al.  The optimal projection equations for reduced-order, discrete-time modeling, estimation, and control , 1986 .

[4]  R. Murtugudde,et al.  Application of a reduced order Kalman filter to initialize a coupled atmosphere-ocean model: Impact on the prediction of E1 Nifio , 2022 .

[5]  A. Johnson Discrete and sampled-data stochastic control problems with complete and incomplete state information , 1991 .

[6]  Dennis S. Bernstein,et al.  The Optimal Projection Equations for Reduced-Order State Estimation , 1985, 1985 American Control Conference.

[7]  Paul W. Fieguth,et al.  Mapping and pseudo-inverse algorithms for data assimilation , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[8]  Dennis S. Bernstein,et al.  Reduced-order multirate estimation , 1994 .

[9]  D. Bernstein,et al.  The optimal projection equations for reduced-order, discrete-time modelling, estimation and control , 1985, 1985 24th IEEE Conference on Decision and Control.

[10]  Robert W. Schunk,et al.  Development of a physics‐based reduced state Kalman filter for the ionosphere , 2004 .

[11]  Dennis S. Bernstein,et al.  Optimal Reduced-Order Subspace-Observer Design with a Frequency-Domain Error Bound , 1990 .

[12]  Peter Hippe,et al.  Optimal reduced-order estimators in the frequency domain: the discrete-time case , 1990 .

[13]  Dennis S. Bernstein,et al.  Optimal reduced-order observer-estimators , 1989 .

[14]  Chien-Shu Hsieh The Unified Structure of Unbiased Minimum-Variance Reduced-Order Filters , 2007, IEEE Transactions on Automatic Control.

[15]  D.S. Bernstein,et al.  State Estimation for Large-Scale Systems Based on Reduced-Order Error-Covariance Propagation , 2007, 2007 American Control Conference.

[16]  Dennis S. Bernstein,et al.  Kalman filtering with constrained output injection , 2007, Int. J. Control.