Fructan and its relationship to abiotic stress tolerance in plants

[1]  A. Liu,et al.  Advances in Planar Lipid Bilayers and Liposomes , 2011 .

[2]  G. Hendrỳ THE ECOLOGICAL SIGNIFICANCE OF FRUCTAN IN A CONTEMPORARY FLORA , 2008 .

[3]  H. M. Nielsen,et al.  alpha,alpha'-trehalose 6,6'-dibehenate in non-phospholipid-based liposomes enables direct interaction with trehalose, offering stability during freeze-drying. , 2008, Biochimica et biophysica acta.

[4]  Chenglung Chen,et al.  Predict the glass transition temperature of glycerol-water binary cryoprotectant by molecular dynamic simulation. , 2008, Cryobiology.

[5]  Yutaka Sato,et al.  Genetic engineering of rice capable of synthesizing fructans and enhancing chilling tolerance. , 2008, Journal of experimental botany.

[6]  R. Wieneke,et al.  Structural and functional characterization of galactooligosaccharides in Nostoc commune: β-d-galactofuranosyl-(1→6)-[β-d-galactofuranosyl-(1→6)]2-β-d-1,4-anhydrogalactitol and β-(1→6)-galactofuranosylated homologues , 2007 .

[7]  G. Xue,et al.  Molecular Dissection of Variation in Carbohydrate Metabolism Related to Water-Soluble Carbohydrate Accumulation in Stems of Wheat1[W] , 2007, Plant Physiology.

[8]  D. Hincha,et al.  Protection of liposomes against fusion during drying by oligosaccharides is not predicted by the calorimetric glass transition temperatures of the dry sugars , 2007, European Biophysics Journal.

[9]  G. Cassab,et al.  Molecular characterization of sucrose: sucrose 1-fructosyltransferase (1-SST) from Agave tequilana Weber var. azul. , 2007 .

[10]  B. De Coninck,et al.  Unraveling the Difference between Invertases and Fructan Exohydrolases: A Single Amino Acid (Asp-239) Substitution Transforms Arabidopsis Cell Wall Invertase1 into a Fructan 1-Exohydrolase1[C] , 2007, Plant Physiology.

[11]  A. Koops,et al.  Developmental modulation of inulin accumulation in storage organs of transgenic maize and transgenic potato , 2007 .

[12]  D. Hincha,et al.  Fructans from oat and rye: composition and effects on membrane stability during drying. , 2007, Biochimica et biophysica acta.

[13]  P. Barre,et al.  Cloning, gene mapping, and functional analysis of a fructan 1-exohydrolase (1-FEH) from Lolium perenne implicated in fructan synthesis rather than in fructan mobilization. , 2007, Journal of experimental botany.

[14]  G. Bryant,et al.  How much solute is needed to inhibit the fluid to gel membrane phase transition at low hydration? , 2007, Biochimica et biophysica acta.

[15]  C. D. De Ranter,et al.  Insights into the fine architecture of the active site of chicory fructan 1-exohydrolase: 1-kestose as substrate vs sucrose as inhibitor. , 2007, The New phytologist.

[16]  Xue-Cheng Zhang,et al.  Improving freezing tolerance of transgenic tobacco expressing sucrose: sucrose 1-fructosyltransferase gene from Lactuca sativa , 2007, Plant Cell, Tissue and Organ Culture.

[17]  D. Livingston,et al.  Understanding freeze stress in biological tissues: Thermodynamics of interfacial water , 2006 .

[18]  S. Smeekens,et al.  Molecular and functional characterization of a cDNA encoding fructan:fructan 6G-fructosyltransferase (6G-FFT)/fructan:fructan 1-fructosyltransferase (1-FFT) from perennial ryegrass (Lolium perenne L.). , 2006, Journal of experimental botany.

[19]  P. Hünenberger,et al.  Interaction of the sugars trehalose, maltose and glucose with a phospholipid bilayer: a comparative molecular dynamics study. , 2006, The journal of physical chemistry. B.

[20]  Wilfred F van Gunsteren,et al.  Conformational and dynamical properties of disaccharides in water: a molecular dynamics study. , 2006, Biophysical journal.

[21]  D. Hincha,et al.  Monosaccharide composition, chain length and linkage type influence the interactions of oligosaccharides with dry phosphatidylcholine membranes. , 2006, Biochimica et biophysica acta.

[22]  D. Hincha,et al.  Low amounts of sucrose are sufficient to depress the phase transition temperature of dry phosphatidylcholine, but not for lyoprotection of liposomes. , 2006, Biophysical journal.

[23]  D. Livingston,et al.  Carbohydrate partitioning between upper and lower regions of the crown in oat and rye during cold acclimation and freezing. , 2006, Cryobiology.

[24]  W. Hinrichs,et al.  The choice of a suitable oligosaccharide to prevent aggregation of PEGylated nanoparticles during freeze thawing and freeze drying. , 2006, International journal of pharmaceutics.

[25]  B. Honermeier,et al.  Effect of water stress on proline accumulation of genetically modified potatoes (Solanum tuberosum L.) generating fructans. , 2006, Journal of plant physiology.

[26]  L. Arckens,et al.  Cloning and functional analysis of a high DP fructan:fructan 1-fructosyl transferase from Echinops ritro (Asteraceae): comparison of the native and recombinant enzymes. , 2006, Journal of experimental botany.

[27]  A. Sum,et al.  Molecular investigation of the interactions of trehalose with lipid bilayers of DPPC, DPPE and their mixture , 2006 .

[28]  A. Geyer,et al.  Occurrence of glucosylsucrose [α‐D‐glucopyranosyl‐ (1→2)‐α‐D‐glucopyranosyl‐(1→2)‐β‐D‐fructofuranoside] and glucosylated homologues in cyanobacteria , 2006 .

[29]  R. Ludescher,et al.  Molecular mobility and the glass transition in amorphous glucose, maltose, and maltotriose. , 2005, Carbohydrate research.

[30]  R. Ludescher,et al.  Dynamic site heterogeneity in amorphous maltose and maltitol from spectral heterogeneity in erythrosin B phosphorescence. , 2005, Carbohydrate research.

[31]  R. Bruskiewich,et al.  Tissue-Specific Expression and Drought Responsiveness of Cell-Wall Invertase Genes of Rice at Flowering , 2005, Plant Molecular Biology.

[32]  R. C. Figueiredo-Ribeiro,et al.  Molecular cloning and characterization of a high DP fructan: fructan 1‐fructosyl transferase from Viguiera discolor (Asteraceae) and its heterologous expression in Pichia pastoris , 2005 .

[33]  A. Geyer,et al.  NMR spectroscopic characterization of the membrane affinity of polyols , 2005, Magnetic resonance in chemistry : MRC.

[34]  Nigel W. Hardy,et al.  Hierarchical metabolomics demonstrates substantial compositional similarity between genetically modified and conventional potato crops. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[35]  G. Spangenberg,et al.  Molecular genetics of fructan metabolism in perennial ryegrass. , 2005, Plant biotechnology journal.

[36]  T. Boller,et al.  Mutational analysis of the active center of plant fructosyltransferases: Festuca 1‐SST and barley 6‐SFT , 2005, FEBS letters.

[37]  D. Livingston,et al.  Changes in the Histology of Cold-Hardened Oat Crowns during Recovery from Freezing , 2005 .

[38]  G. Flachowsky,et al.  Nutritional assessment of silage from transgenic inulin synthesizing potatoes for pigs , 2005 .

[39]  S. Clerens,et al.  Cloning, characterization and functional analysis of novel 6-kestose exohydrolases (6-KEHs) from wheat (Triticum aestivum). , 2005, The New phytologist.

[40]  H. Frijlink,et al.  Inulin is a promising cryo- and lyoprotectant for PEGylated lipoplexes. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[41]  O. Fiehn,et al.  Comparison of rapid liquid chromatography-electrospray ionization-tandem mass spectrometry methods for determination of glycoalkaloids in transgenic field-grown potatoes. , 2005, Analytical biochemistry.

[42]  Midori Yoshida,et al.  Molecular characterization and expression of a cDNA encoding fructan:fructan 6G-fructosyltransferase from asparagus (Asparagus officinalis). , 2004, The New phytologist.

[43]  M. Roberfroid Inulin-type fructans: functional food ingredients. , 2004, The Journal of nutrition.

[44]  D. Hincha,et al.  Stabilization of model membranes during drying by compatible solutes involved in the stress tolerance of plants and microorganisms. , 2004, The Biochemical journal.

[45]  Toshihiko Yamada,et al.  Transgenic perennial ryegrass plants expressing wheat fructosyltransferase genes accumulate increased amounts of fructan and acquire increased tolerance on a cellular level to freezing , 2004 .

[46]  Piotr E Marszalek,et al.  Molecular dynamics simulations of forced conformational transitions in 1,6-linked polysaccharides. , 2004, Biophysical journal.

[47]  Marcos A. Villarreal,et al.  Molecular dynamics simulation study of the interaction of trehalose with lipid membranes. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[48]  Wendell Q. Sun,et al.  The Glass Transition Behaviors of Hydroxyethyl Starch Solutions , 2004 .

[49]  N. Gerrits,et al.  Production of tailor-made fructans in sugar beet by expression of onion fructosyltransferase genes. , 2004, Plant biotechnology journal.

[50]  T. Boller,et al.  The large subunit determines catalytic specificity of barley sucrose:fructan 6‐fructosyltransferase and fescue sucrose:sucrose 1‐fructosyltransferase , 2004, FEBS letters.

[51]  J. Buitink,et al.  Glass formation in plant anhydrobiotes: survival in the dry state. , 2004, Cryobiology.

[52]  J. Milhaud New insights into water-phospholipid model membrane interactions. , 2004, Biochimica et biophysica acta.

[53]  H. A. Outred,et al.  Tissue-specific changes in remobilisation of fructan in the xerophytic tussock species Festuca novae-zelandiae in response to a water deficit. , 2004, Functional plant biology : FPB.

[54]  Serge Stoll,et al.  Explicit-Solvent Molecular Dynamics Simulations of the β(1→3)- and β(1→6)-Linked Disaccharides β-Laminarabiose and β-Gentiobiose in Water , 2004 .

[55]  Roberto D Lins,et al.  Interaction of the disaccharide trehalose with a phospholipid bilayer: a molecular dynamics study. , 2004, Biophysical journal.

[56]  T. Boller,et al.  Distinct regulation of sucrose: sucrose-1-fructosyltransferase (1-SST) and sucrose: fructan-6-fructosyltransferase (6-SFT), the key enzymes of fructan synthesis in barley leaves: 1-SST as the pacemaker. , 2004, New Phytologist.

[57]  A. J. Cairns,et al.  Cloning and characterization of a putative fructosyltransferase and two putative invertase genes from the temperate grass Lolium temulentum L. , 2004, Journal of experimental botany.

[58]  L. Willmitzer,et al.  Expression of a yeast-derived invertase in companion cells results in long-distance transport of a trisaccharide in an apoplastic loader and influences sucrose transport , 2004, Planta.

[59]  Juan J de Pablo,et al.  Molecular simulation study of phospholipid bilayers and insights of the interactions with disaccharides. , 2003, Biophysical journal.

[60]  D. Hincha,et al.  The effect of fructan on the phospholipid organization in the dry state. , 2003, Biophysical journal.

[61]  J. Zimmerberg,et al.  Membrane permeability changes at early stages of influenza hemagglutinin-mediated fusion. , 2003, Biophysical journal.

[62]  D. Hincha,et al.  The preservation of liposomes by raffinose family oligosaccharides during drying is mediated by effects on fusion and lipid phase transitions. , 2003, Biochimica et biophysica acta.

[63]  S. Smeekens,et al.  The effect of fructan on membrane lipid organization and dynamics in the dry state. , 2003, Biophysical journal.

[64]  T. H. Evers,et al.  Structural requirements of the fructan-lipid interaction. , 2003, Biophysical journal.

[65]  Andrew Almond,et al.  Predicting the molecular shape of polysaccharides from dynamic interactions with water. , 2003, Glycobiology.

[66]  G. Bryant,et al.  Exclusion of maltodextrins from phosphatidylcholine multilayers during dehydration: effects on membrane phase behaviour , 2003, European Biophysics Journal.

[67]  S. Clerens,et al.  Fructan 1-Exohydrolases. β-(2,1)-Trimmers during Graminan Biosynthesis in Stems of Wheat? Purification, Characterization, Mass Mapping, and Cloning of Two Fructan 1-Exohydrolase Isoforms1,212 , 2003, Plant Physiology.

[68]  M. Müller,et al.  A new mechanism of model membrane fusion determined from Monte Carlo simulation. , 2002, Biophysical journal.

[69]  R. Laine,et al.  Trehalose-based oligosaccharides isolated from the cytoplasm of Mycobacterium smegmatis. Relation to trehalose-based oligosaccharides attached to lipid. , 2002, European journal of biochemistry.

[70]  D. Djilianov,et al.  Freezing tolerant tobacco, transformed to accumulate osmoprotectants , 2002 .

[71]  R. Bino,et al.  Increased Production of Nutriments by Genetically Engineered Crops , 2002, Journal of the American College of Nutrition.

[72]  G. Fahey,et al.  Pet food and feed applications of inulin, oligofructose and other oligosaccharides , 2002, British Journal of Nutrition.

[73]  D. Hincha,et al.  Specific effects of fructo- and gluco-oligosaccharides in the preservation of liposomes during drying. , 2002, Glycobiology.

[74]  Midori Yoshida,et al.  Molecular Characterization of Sucrose:Sucrose 1-Fructosyltransferase and Sucrose:Fructan 6-Fructosyltransferase Associated with Fructan Accumulation in Winter Wheat during Cold Hardening , 2002, Bioscience, biotechnology, and biochemistry.

[75]  D. Hincha,et al.  Non-disaccharide-based mechanisms of protection during drying. , 2001, Cryobiology.

[76]  Karl N. Kirschner,et al.  Solvent interactions determine carbohydrate conformation , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[77]  M. Prud'homme,et al.  Fructans and fructan‐metabolizing enzymes in leaves of Lolium perenne , 2001 .

[78]  S. Baumgartner,et al.  Structure of fructans in roots and leaf tissues of Lolium perenne , 2001 .

[79]  H. Frijlink,et al.  Inulin glasses for the stabilization of therapeutic proteins. , 2001, International journal of pharmaceutics.

[80]  J. Crowe,et al.  Factors affecting leakage of trapped solutes from phospholipid vesicles during thermotropic phase transitions. , 2001, Cryobiology.

[81]  S. Smeekens,et al.  Fructans insert between the headgroups of phospholipids. , 2001, Biochimica et biophysica acta.

[82]  R. Wendenburg,et al.  Gene Cloning and Functional Characterization by Heterologous Expression of the Fructosyltransferase of Aspergillus sydowi IAM 2544 , 2001, Applied and Environmental Microbiology.

[83]  C. J. Nelson,et al.  Cloning and functional analysis of sucrose:sucrose 1-fructosyltransferase from tall fescue. , 2000, Plant physiology.

[84]  M. A. Hemminga,et al.  High critical temperature above T(g) may contribute to the stability of biological systems. , 2000, Biophysical journal.

[85]  L. Willmitzer,et al.  Transgenic potato (Solanum tuberosum) tubers synthesize the full spectrum of inulin molecules naturally occurring in globe artichoke (Cynara scolymus) roots. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[86]  D. E. Smith,et al.  Effect of water content and molecular weight on the moisture isotherms and glass transition properties of inulin , 2000 .

[87]  Y. P. Lei,et al.  Effects of vitrified and nonvitrified sugars on phosphatidylcholine fluid-to-gel phase transitions. , 2000, Biophysical journal.

[88]  S. Smeekens,et al.  Fructan: more than a reserve carbohydrate? , 1999, Plant physiology.

[89]  M. Nakagaki,et al.  Relationship between Hydrophobic Index of Saccharide and Gel-Liquid Crystal Transition Temperature of the L-α-Dipalmitoyl Phosphatidylcholine (DPPC)/Saccharide/Water System , 1999 .

[90]  Young In Park,et al.  Transgenic tobacco plants expressing the bacterial levansucrase gene show enhanced tolerance to osmotic stress , 1999 .

[91]  T. Boller,et al.  Expression of a functional barley sucrose‐fructan 6‐fructosyltransferase in the methylotrophic yeast Pichia pastoris , 1998, FEBS letters.

[92]  S. Risbud,et al.  Effect of sugars on headgroup mobility in freeze-dried dipalmitoylphosphatidylcholine bilayers: solid-state 31P NMR and FTIR studies. , 1998, Biophysical journal.

[93]  H. Bohnert,et al.  Transformation and compatible solutes , 1998 .

[94]  D. Livingston,et al.  Characterization of a fructan exohydrolase purified from barley stems that hydrolyzes multiple fructofuranosidic linkages , 1998 .

[95]  A. Koops,et al.  High level fructan accumulation in a transgenic sugar beet , 1998, Nature Biotechnology.

[96]  A. V. Van Dijken,et al.  Cloning of sucrose:sucrose 1-fructosyltransferase from onion and synthesis of structurally defined fructan molecules from sucrose. , 1998, Plant physiology.

[97]  A. Koops,et al.  Cloning of the fructan biosynthesis pathway of Jerusalem artichoke. , 1998, The Plant journal : for cell and molecular biology.

[98]  P. Harrison,et al.  Localization of expression of three cold-induced genes, blt101, blt4. 9, and blt14, in different tissues of the crown and developing leaves of cold-acclimated cultivated barley , 1998, Plant physiology.

[99]  A. E. Oliver,et al.  Methods for dehydration-tolerance: Depression of the phase transition temperature in dry membranes and carbohydrate vitrification , 1998, Seed Science Research.

[100]  L. Willmitzer,et al.  Differences in chain length distribution of inulin from Cynara scolymus and Helianthus tuberosus are reflected in a transient plant expression system using the respective 1‐FFT cDNAs , 1998, FEBS letters.

[101]  L. Willmitzer,et al.  Production of 1-Kestose in Transgenic Yeast Expressing a Fructosyltransferase from Aspergillus foetidus , 1998, Journal of bacteriology.

[102]  Nobel,et al.  Phloem Transport of Fructans in the Crassulacean Acid Metabolism Species Agave deserti , 1998, Plant physiology.

[103]  L. Willmitzer,et al.  Transgenic potato tubers accumulate high levels of 1-kestose and nystose: functional identification of a sucrose sucrose 1-fructosyltransferase of artichoke (Cynara scolymus) blossom discs. , 1997, The Plant journal : for cell and molecular biology.

[104]  F. Pincet,et al.  Correction to "Is vitrification involved in depression of the phase transition temperature in dry phospholipids?" [Biochim. Biophys. Acta 1280 (1996) 187-196]. , 1997, Biochimica et biophysica acta.

[105]  A. E. Oliver,et al.  Stabilization of dry membranes by mixtures of hydroxyethyl starch and glucose: the role of vitrification. , 1997, Cryobiology.

[106]  Wendell Q. Sun,et al.  CYTOPLASMIC VITRIFICATION AND SURVIVAL OF ANHYDROBIOTIC ORGANISMS , 1997 .

[107]  J. Dat,et al.  Hydrogen peroxide‐ and glutathione‐associated mechanisms of acclimatory stress tolerance and signalling , 1997 .

[108]  P. Caimi,et al.  Cytosolic expression of the Bacillus amyloliquefaciens SacB protein inhibits tissue development in transgenic tobacco and potato , 1997 .

[109]  A. V. Van Dijken,et al.  Fructan of the inulin neoseries is synthesized in transgenic chicory plants (Cichorium intybus L.) harbouring onion (Allium cepa L.) fructan:fructan 6G-fructosyltransferase. , 1997, The Plant journal : for cell and molecular biology.

[110]  R. Simpson,et al.  A fructan: fructan fructosyltransferase activity from Lolium rigidum , 1997 .

[111]  A. Laere,et al.  De-novo synthesis of fructans from sucrose in vitro by a combination of two purified enzymes (sucrose: sucrose 1-fructosyl transferase and fructan: fructan 1-fructosyl transferase) from chicory roots (Cichorium intybus L.) , 1996, Planta.

[112]  M. Mathlouthi,et al.  FTIR and laser-Raman spectra of oligosaccharides in water: characterization of the glycosidic bond. , 1996, Carbohydrate research.

[113]  J. Crowe,et al.  Is vitrification involved in depression of the phase transition temperature in dry phospholipids? , 1996, Biochimica et biophysica acta.

[114]  Wendell Q. Sun,et al.  Stability of dry liposomes in sugar glasses. , 1996, Biophysical journal.

[115]  W. Van den Ende,et al.  The metabolism of fructans in roots of Cichorium intybus during growth, storage and forcing. , 1996, The New phytologist.

[116]  K. Miyajima,et al.  Effects of glucose and its oligomers on the stability of freeze-dried liposomes. , 1996, Biochimica et biophysica acta.

[117]  T. Boller,et al.  Purification, cloning, and functional expression of sucrose:fructan 6-fructosyltransferase, a key enzyme of fructan synthesis in barley. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[118]  F. Allard,et al.  Immunolocalization of freezing-tolerance-associated proteins in the cytoplasm and nucleoplasm of wheat crown tissues. , 1995, The Plant journal : for cell and molecular biology.

[119]  P. Weisbeek,et al.  Improved Performance of Transgenic Fructan-Accumulating Tobacco under Drought Stress , 1995, Plant physiology.

[120]  Shinro Yamamoto,et al.  Studies on Fructan Accumulation in Wheat (Triticum aestivum L.) : II. Changes in degree of polymerization of fructan under treatment at 1°C in dark , 1994 .

[121]  C. J. Nelson,et al.  Response of Fructan to Water Deficit in Growing Leaves of Tall Fescue , 1994, Plant physiology.

[122]  J. Crowe,et al.  Is vitrification sufficient to preserve liposomes during freeze-drying? , 1994, Cryobiology.

[123]  J. Crowe,et al.  Trehalose lowers membrane phase transitions in dry yeast cells. , 1994, Biochimica et biophysica acta.

[124]  H. Ross,et al.  Developmental changes in carbohydrate content and sucrose degrading enzymes in tuberising stolons of potato (Solanum tuberosum) , 1994 .

[125]  D. Hincha,et al.  The solute permeability of thylakoid membranes is reduced by low concentrations of trehalose as a co-solute. , 1994, Biochimica et biophysica acta.

[126]  N. J. Chatterton,et al.  Science and Technology of Fructans , 1993 .

[127]  K. Geider,et al.  Characterization and influence on virulence of the levansucrase gene from the fireblight pathogen Erwinia amylovora , 1993 .

[128]  G. Elwinger,et al.  Fructan and sugars in 273 oat accessions , 1993 .

[129]  C. Pollock,et al.  Structural analysis of oligomeric fructans from excised leaves of Lolium temulentum , 1992 .

[130]  N. Carpita,et al.  Differences in fructan accumulated in induced and field-grown wheat plants: an elongation-trimming pathway for their synthesis , 1992 .

[131]  A. Waterhouse,et al.  Conformational analysis of 1-kestose by molecular mechanics and by n.m.r. spectroscopy. , 1991, Carbohydrate research.

[132]  Yoshiaki Watanabe,et al.  Studies on Fructan Accumulation in Wheat (Triticum aestivum L.) : I. Relationship between fructan concentration and overwintering ability from aspect on the pedigree , 1991 .

[133]  D. Hincha Low concentrations of trehalose protect isolated thylakoids against mechanical freeze-thaw damage , 1989 .

[134]  R. Parker,et al.  Effect of water as a diluent on the glass transition behaviour of malto-oligosaccharides, amylose and amylopectin. , 1989, International journal of biological macromolecules.

[135]  N. Shiomi Properties of Fructosyltransferases Involved in the Synthesis of Fructan in Liliaceous Plants , 1989 .

[136]  K. H. Asay,et al.  Carbohydrate Partitioning in 185 Accessions of Gramineae Grown Under Warm and Cool Temperatures , 1989 .

[137]  H. Pontis Fructans and cold stress , 1989 .

[138]  Michio Suzuki,et al.  Fructan in winter wheat, triticale, and fall rye cultivars of varying cold hardiness , 1988 .

[139]  C. Pollock,et al.  Effect of photoperiod and irradiance changes upon development of freezing tolerance and accumulation of soluble carbohydrate in seedlings of Lolium perenne grown at 2°C , 1988 .

[140]  L. Slade,et al.  Principles of cryostabilization technology from structure property relationships of carbohydrate water systems a review , 1988 .

[141]  Y. Yano,et al.  The polystyrene affinity of methylglycosides, deoxysugars and glucooligosaccharides , 1988 .

[142]  H. Kuramitsu,et al.  Sequence analysis of the Streptococcus mutans fructosyltransferase gene and flanking regions , 1988, Journal of bacteriology.

[143]  J. Carpenter,et al.  Stabilization of dry phospholipid bilayers and proteins by sugars. , 1987, The Biochemical journal.

[144]  T. Shimada,et al.  Aanatomical observation of the development of freezing injury in orchardgrass crown , 1986 .

[145]  M. Bally,et al.  Protection of large unilamellar vesicles by trehalose during dehydration: retention of vesicle contents. , 1985, Biochimica et biophysica acta.

[146]  R. Dixon,et al.  Biochemistry of Storage Carbohydrates in Green Plants , 1985 .

[147]  P. Quinn,et al.  A lipid-phase separation model of low-temperature damage to biological membranes. , 1985, Cryobiology.

[148]  G. Lester,et al.  Freeze‐Induced Changes in Soluble Carbohydrates of Rye1 , 1985 .

[149]  K. Tanino,et al.  Injury within the crown of winter wheat seedlings after freezing and icing stress , 1985 .

[150]  T. Swain Current Topics in Plant Biochemistry and Physiology , 1984 .

[151]  C. Pollock Sucrose accumulation and the initiation of fructan biosynthesis in Lolium temulentum L. , 1984 .

[152]  A. Wiemken,et al.  Fructan Metabolism in Cereals: Induction in Leaves and Compartmentation in Protoplasts and Vacuoles , 1983 .

[153]  G. Lenaz Book reviewPlant Carbohydrates. I. Intracellular Carbohydrates. : Encyclopedia of Plant Physiology, New series, Vol. 13A. F.A. Loewus and W. Tanner (Editors). Springer-Verlag, Berlin, Heidelberg, New York, 1982, xxii + 918 pp., DM 298, US$32.40. , 1983 .

[154]  D. Green SOLUBLE SUGAR CHANGES OCCURRING DURING COLD HARDENING OF SPRING WHEAT, FALL RYE AND ALFALFA , 1983 .

[155]  J. Hoch,et al.  Cloning structural gene sacB, which codes for exoenzyme levansucrase of Bacillus subtilis: expression of the gene in Escherichia coli , 1983, Journal of bacteriology.

[156]  M. A. Westhafer,et al.  Carbohydrate Quantification and Relationships with N Nutrition in Cool-Season Turfgrasses1 , 1982 .

[157]  R. Henry,et al.  DIFFERENCES IN FRUCTAN CONTENT AND SYNTHESIS IN SOME ALLIUM SPECIES , 1981 .

[158]  J. Grace,et al.  Responses of Plants to Environmental Stresses. Volume II. Water, Radiation, Salt, and other Stresses. , 1980 .

[159]  C. Pollock,et al.  SEASONAL PATTERNS OF FRUCTAN METABOLISM IN FORAGE GRASSES , 1979 .

[160]  C. R. Olien,et al.  Ice adhesions in relation to freeze stress. , 1977, Plant physiology.

[161]  K. Santarius The protective effect of sugars on chloroplast membranes during temperature and water stress and its relationship to frost, desiccation and heat resistance , 1973, Planta.

[162]  J. Edelman,et al.  THE MECHANISIM OF FRUCTOSAN METABOLISM IN HIGHER PLANTS AS EXEMPLIFIED IN HELIANTHUS TUBEROSUS , 1968 .

[163]  F. O. Lanphear,et al.  The Relationship of Carbohydrates to Cold Acclimation of Hedera helix L. cv. Thorndale , 1968 .

[164]  C. Eagles Variation in the Soluble Carbohydrate Content of Climatic Races of Dactylis Glomerata (Cocksfoot) at Different Temperatures , 1967 .

[165]  M. A. Hudson,et al.  The formation of ice in plant tissues , 1962, Planta.

[166]  A. Sakai Relation of Sugar Content to Frost-Hardiness in Plants , 1960, Nature.

[167]  J. Levitt Effects of Artificial Increases in Sugar Content on Frost Hardiness. , 1959, Plant physiology.

[168]  R. Waite,et al.  The water‐soluble carbohydrates of grasses. I.—Changes occurring during the normal life‐cycle , 1953 .

[169]  E. Barton-wright Biochemistry of Plants , 1950, Nature.

[170]  H. Archbold FRUCTOSANS IN THE MONOCOTYLEDONS. A REVIEW , 1940 .

[171]  J. Levitt,et al.  FROST-HARDENING STUDIES WITH LIVING CELLS: II. PERMEABILITY IN RELATION TO FROST RESISTANCE AND THE SEASONAL CYCLE , 1936 .

[172]  J. Levitt,et al.  FROST-HARDENING STUDIES WITH LIVING CELLS: I. OSMOTIC AND BOUND WATER CHANGES IN RELATION TO FROST RESISTANCE AND THE SEASONAL CYCLE , 1936 .

[173]  R. Newton Colloidal properties of winter wheat plants in relation to frost resistance , 1924, The Journal of Agricultural Science.

[174]  S. Clerens,et al.  The rice genome encodes two vacuolar invertases with fructan exohydrolase activity but lacks the related fructan biosynthesis genes of the Pooideae. , 2007, The New phytologist.

[175]  N. Suzuki,et al.  Reactive oxygen species and temperature stresses: A delicate balance between signaling and destruction , 2006 .

[176]  S. Clerens,et al.  Purification, cloning and functional characterization of a fructan 6-exohydrolase from wheat (Triticum aestivum L.). , 2006, Journal of experimental botany.

[177]  D. Hincha,et al.  Effects of sugars on the stability and structure of lipid membranes during drying , 2006 .

[178]  D. Djilianov,et al.  Transgenic tobacco plants accumulating osmolytes show reduced oxidative damage under freezing stress. , 2004, Plant physiology and biochemistry : PPB.

[179]  A. J. Cairns,et al.  Fructan biosynthesis in transgenic plants. , 2003, Journal of experimental botany.

[180]  S. Smeekens,et al.  Engineering fructan metabolism in plants. , 2003, Journal of plant physiology.

[181]  T. Boller,et al.  Light and sugar regulation of the barley sucrose : fructan 6-fructosyltransferase promoter , 2001 .

[182]  D. Hincha,et al.  Plant fructans stabilize phosphatidylcholine liposomes during freeze-drying. , 2000, European journal of biochemistry.

[183]  J. Carpenter,et al.  The role of vitrification in anhydrobiosis. , 1998, Annual review of physiology.

[184]  D. Livingston,et al.  Apoplastic Sugars, Fructans, Fructan Exohydrolase, and Invertase in Winter Oat: Responses to Second-Phase Cold Hardening , 1998 .

[185]  M. Canny Apoplastic Water and Solute Movement: New Rules for an Old Space , 1995 .

[186]  N. J. Chatterton,et al.  Structure and quantity of fructan oligomers in oat (Avena spp.) , 1993 .

[187]  J. Brady,et al.  The role of hydrogen bonding in carbohydrates: molecular dynamics simulations of maltose in aqueous solution , 1993 .

[188]  A. J. Cairns,et al.  Fructan metabolism in grasses and cereals , 1991 .

[189]  K. Miyajima,et al.  Correlation between the hydrophobic nature of monosaccharides and cholates, and their hydrophobic indices , 1988 .

[190]  P. Englmaier,et al.  Carbohydrate Metabolism of Salt-tolerant Fructan Grasses as Exemplified with Puccinellia peisonis , 1987 .

[191]  C. Pollock Environmental effects on sucrose and fructan metabolism , 1986 .

[192]  D. Siminovitch,et al.  Correlation between Cold- and Drought-Induced Frost Hardiness in Winter Wheat and Rye Varieties. , 1982, Plant physiology.

[193]  J. Reid,et al.  Reserve Polysaccharides Other Than Starch in Higher Plants , 1982 .

[194]  C. R. Olien,et al.  Analysis and improvement of plant cold hardiness , 1981 .

[195]  R. Henry,et al.  THE DISTRIBUTION OF FRUCTANS IN ONIONS , 1978 .

[196]  H. Meryman The Relationship between Dehydration and Freezing Injury in the Human Erythrocyte , 1967 .