Influence of injection molding parameters on the electrical resistivity of polycarbonate filled with multi-walled carbon nanotubes

Abstract Two polycarbonate (PC) composites with 2 and 5 wt% multi-walled carbon nanotube (MWNT) content were injection molded using a two-level, four-factor factorial design to evaluate the influences of holding pressure, injection velocity, mold temperature, and melt temperature on the electrical surface and volume resistivities. For both composites variations in resistivity of the injection-molded plates up to six orders of magnitude were found. The highest impact was determined for the injection velocity followed by the melt temperature and the interaction of both. The resistivity varied also locally within the plates showing differences up to five orders of magnitude for 2 wt% and up to two orders for 5 wt% MWNT. Thereby, areas of equal resistivity are formed in a semicircular shape with values increasing with the flow path. Transmission electron microscopy (TEM) investigations indicated a skin layer with highly oriented nanotubes in case of high injection velocity and low melt temperature, but a network-like structure even in the skin area at low injection velocity and high melt temperature.

[1]  Kwon,et al.  Unusually high thermal conductivity of carbon nanotubes , 2000, Physical review letters.

[2]  N. Ohtake,et al.  Injection Molding of Polystyrene Matrix Composites Filled with Vapor Grown Carbon Fiber , 2003 .

[3]  J. Coleman,et al.  Carbon nanotubes for reinforcement of plastics? A case study with poly(vinyl alcohol) , 2007 .

[4]  U. Sundararaj,et al.  Big returns from small fibers: A review of polymer/carbon nanotube composites , 2004 .

[5]  Musa R. Kamal,et al.  Estimation of the volume resistivity of electrically conductive composites , 1997 .

[6]  Hui-Ming Cheng,et al.  Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes , 2000 .

[7]  Yang Wang,et al.  Direct Mechanical Measurement of the Tensile Strength and Elastic Modulus of Multiwalled Carbon Nanotubes , 2002, Microscopy and Microanalysis.

[8]  J. Hone,et al.  Thermal properties of carbon nanotubes and nanotube-based materials , 2002 .

[9]  H. Lezec,et al.  Electrical conductivity of individual carbon nanotubes , 1996, Nature.

[10]  Deron A. Walters,et al.  Elastic strain of freely suspended single-wall carbon nanotube ropes , 1999 .

[11]  Shear-induced migration of conductive fillers in injection molding , 2004 .

[12]  Mool C. Gupta,et al.  A comparative study of EMI shielding properties of carbon nanofiber and multi-walled carbon nanotube filled polymer composites. , 2005, Journal of nanoscience and nanotechnology.

[13]  S. Xie,et al.  Very long carbon nanotubes , 1998, Nature.

[14]  Charles M. Lieber,et al.  Probing Electrical Transport in Nanomaterials: Conductivity of Individual Carbon Nanotubes , 1996, Science.

[15]  Jack F Douglas,et al.  Flow-induced properties of nanotube-filled polymer materials , 2004, Nature materials.

[16]  Linda S. Schadler,et al.  LOAD TRANSFER IN CARBON NANOTUBE EPOXY COMPOSITES , 1998 .

[17]  M. Dresselhaus,et al.  Electronic structure of double‐layer graphene tubules , 1993 .

[18]  White,et al.  Helical and rotational symmetries of nanoscale graphitic tubules. , 1993, Physical review. B, Condensed matter.

[19]  A. Kulik,et al.  Mechanical properties of carbon nanotubes , 1999 .

[20]  Elizabeth C. Dickey,et al.  Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites , 2000 .

[21]  B. Satapathy,et al.  Crack Toughness Behaviour of Multiwalled Carbon Nanotube (MWNT)/Polycarbonate Nanocomposites , 2005 .

[22]  Rodney S. Ruoff,et al.  Mechanical and thermal properties of carbon nanotubes , 1995 .

[23]  C. Friedrich,et al.  Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene , 2004 .

[24]  M. Shaffer,et al.  Fabrication and Characterization of Carbon Nanotube/Poly(vinyl alcohol) Composites , 1999 .

[25]  Hsu-Chiang Kuan,et al.  Preparation and electromagnetic interference shielding characteristics of novel carbon‐nanotube/siloxane/poly‐(urea urethane) nanocomposites , 2005 .

[26]  A. Kulik,et al.  Mechanical properties of carbon nanotubes , 1999 .

[27]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[28]  Sumio Iijima,et al.  Growth of carbon nanotubes , 1993 .

[29]  Dusan A. Pejakovic,et al.  Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst , 2004 .

[30]  W. Goddard,et al.  Thermal conductivity of carbon nanotubes , 2000 .

[31]  Yoshinori Ando,et al.  Pentagons, heptagons and negative curvature in graphite microtubule growth , 1992, Nature.

[32]  M. Radosavljevic,et al.  Carbon nanotube composites for thermal management , 2002, cond-mat/0205418.

[33]  Charlier,et al.  Energetics of multilayered carbon tubules. , 1993, Physical review letters.

[34]  M. S. Dresselhaus,et al.  The remarkable properties of carbon nanotubes as nanoclusters , 1999 .

[35]  G. Xu,et al.  Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly(methyl methacrylate) composites , 2001 .