A New Framework for Sharp and Efficient Resolution of NCSP with Manifolds of Solutions

When numerical CSPs are used to solve systems of nequations with nvariables, the interval Newton operator plays a key role: It acts like a global constraint, hence achieving a powerful contraction, and proves rigorously the existence of solutions. However, both advantages cannot be used for under-constrained systems of equations, which have manifolds of solutions. A new framework is proposed in this paper to extend the advantages of the interval Newton to under-constrained systems of equations. This is done simply by permitting domains of CSPs to be parallelepipeds instead of the usual boxes.

[1]  Alexandre Goldsztejn A branch and prune algorithm for the approximation of non-linear AE-solution sets , 2006, SAC '06.

[2]  S. Rump Rigorous sensitivity analysis for systems of linear and nonlinear equations , 1990 .

[3]  Nedialko S. Nedialkov,et al.  Validated solutions of initial value problems for ordinary differential equations , 1999, Appl. Math. Comput..

[4]  Frédéric Benhamou,et al.  Applying Interval Arithmetic to Real, Integer, and Boolean Constraints , 1997, J. Log. Program..

[5]  E. Walter,et al.  Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics , 2001 .

[6]  Hélène Collavizza,et al.  Comparing Partial Consistencies , 1998, SCAN.

[7]  Olivier Lhomme,et al.  Consistency Techniques for Numeric CSPs , 1993, IJCAI.

[8]  Damien Chablat,et al.  Working modes and aspects in fully parallel manipulators , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[9]  B. Hayes,et al.  A Lucid Interval , 2003, American Scientist.

[10]  A. Neumaier Interval methods for systems of equations , 1990 .

[11]  Alexandre Goldsztejn Sensitivity Analysis Using a Fixed Point Interval Iteration , 2008, ArXiv.

[12]  R. B. Kearfott,et al.  An Interval Step Control for Continuation Methods , 1994 .

[13]  Frédéric Benhamou,et al.  Algorithm 852: RealPaver: an interval solver using constraint satisfaction techniques , 2006, TOMS.

[14]  R. B. Kearfott,et al.  Interval Computations: Introduction, Uses, and Resources , 2000 .

[15]  A. Goldsztejn,et al.  On the Approximation of Linear AE-Solution Sets , 2006, 12th GAMM - IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics (SCAN 2006).

[16]  Jorge J. Moré,et al.  Testing Unconstrained Optimization Software , 1981, TOMS.

[17]  David Goldberg,et al.  What every computer scientist should know about floating-point arithmetic , 1991, CSUR.

[18]  David A. McAllester,et al.  Solving Polynomial Systems Using a Branch and Prune Approach , 1997 .

[19]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[20]  Pascal Van Hentenryck,et al.  CLP(Intervals) Revisited , 1994, ILPS.

[21]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[22]  A. Neumaier Overestimation in linear interval equations , 1987 .

[23]  Jeff Tupper,et al.  Reliable two-dimensional graphing methods for mathematical formulae with two free variables , 2001, SIGGRAPH.

[24]  Jorge J. Moré,et al.  Algorithm 566: FORTRAN Subroutines for Testing Unconstrained Optimization Software [C5], [E4] , 1981, TOMS.

[25]  Alexandre Goldsztejn A Right-Preconditioning Process for the Formal–Algebraic Approach to Inner and Outer Estimation of AE-Solution Sets , 2005, Reliab. Comput..

[26]  Jean-Pierre Merlet,et al.  Parallel Robots , 2000 .

[27]  Frédéric Goualard,et al.  Revising Hull and Box Consistency , 1999, ICLP.