Black box Frobenius decompositions over small fields
暂无分享,去创建一个
[1] Allan K. Steel,et al. Algorithm for the Computation of Canonical Forms of Matrices over Fields , 1997, J. Symb. Comput..
[2] Mark Giesbrecht,et al. Nearly Optimal Algorithms for Canonical Matrix Forms , 1995, SIAM J. Comput..
[3] I. Blake,et al. Computational aspects of discrete logarithms , 1996 .
[4] Patrick Ozello,et al. Calcul exact des formes de Jordan et de Frobenius d'une matrice. (Exact computation of the Jordan and Frobenius forms of a matrix) , 1987 .
[5] Douglas H. Wiedemann. Solving sparse linear equations over finite fields , 1986, IEEE Trans. Inf. Theory.
[6] Wayne Eberly,et al. Asymptotically Efficient Algorithms for the Frobenius Form , 2002 .
[7] Joachim von zur Gathen,et al. Modern Computer Algebra , 1998 .
[8] G. Villard. Computing the Frobenius Normal Form of a Sparse Matrix , 2000 .
[9] Erich Kaltofen,et al. Challenges of Symbolic Computation: My Favorite Open Problems , 2000, J. Symb. Comput..
[10] Heinz Lüneburg,et al. On the rational normal form of endomorphisms : a primer to constructive algebra , 1987 .
[11] James L. Massey,et al. Step-by-step decoding of the Bose-Chaudhuri- Hocquenghem codes , 1965, IEEE Trans. Inf. Theory.
[12] Daniel Augot,et al. On the Computation of Minimal Polynomials, Cyclic Vectors, and Frobenius Forms , 1997 .
[13] V. Strassen. Gaussian elimination is not optimal , 1969 .
[14] Don Coppersmith,et al. Matrix multiplication via arithmetic progressions , 1987, STOC.
[15] Arne Storjohann,et al. An O(n3) algorithm for the Frobenius normal form , 1998, ISSAC '98.
[16] Elwyn R. Berlekamp,et al. Algebraic coding theory , 1984, McGraw-Hill series in systems science.
[17] James L. Massey,et al. Shift-register synthesis and BCH decoding , 1969, IEEE Trans. Inf. Theory.