A general non-parametric approach to the analysis of ordinal categorical data

This paper presents a general class of models for ordinal categorical data which can be specified by means of linear and/or log-linear equality and/or inequality restrictions on the (conditional) probabilities of a multi-way contingency table. Some special cases are models with ordered local odds ratios, models with ordered cumulative response probabilities, order-restricted row association and column association models, and models for stochastically ordered marginal distributions. A simple uni-dimensional Newton algorithm is proposed for obtaining the restricted maximum likelihood estimates. In situations in which there is some kind of missing data, this algorithm can be implemented in the M step of an EM algorithm. Computation of p-values of testing statistics is performed by means of parametric bootstrapping.

[1]  Clifford C. Clogg,et al.  Some Common Problems in Log-Linear Analysis , 1987 .

[2]  Y. Ritov,et al.  Analysis of contingency tables by correspondence models subject to order constraints , 1993 .

[3]  J. Leeuw,et al.  Reduced Rank Models for Contingency Tables , 1991 .

[4]  J. Hagenaars Categorical Causal Modeling , 1998 .

[5]  Morton B. Brown,et al.  Maximum likelihood methods for log-linear models when expected frequencies are subject to linear constraints , 1986 .

[6]  Fitting generalized linear models with linear inequality parameter constraints , 1983 .

[7]  J. Pannekoek,et al.  Bootstrapping Goodness-of-Fit Measures in Categorical Data Analysis , 1996 .

[8]  Philip E. Gill,et al.  Numerical methods for constrained optimization , 1974 .

[9]  I. W. Molenaar,et al.  A multidimensional item response model: Constrained latent class analysis using the gibbs sampler and posterior predictive checks , 1997 .

[10]  L. Fahrmeir,et al.  Estimating and testing generalized linear models under inequality restrictions , 1994 .

[11]  Philip E. Gill,et al.  Practical optimization , 1981 .

[12]  Ronald Schoenberg,et al.  Constrained Maximum Likelihood , 1997 .

[13]  Leo A. Goodman,et al.  Some Useful Extensions of the Usual Correspondence Analysis Approach and the Usual Log-Linear Models Approach in the Analysis of Contingency Tables , 1986 .

[14]  A. Agresti,et al.  Order-Restricted Score Parameters in Association Models for Contingency Tables , 1987 .

[15]  D. Grove A Test of Independence against a Class of Ordered Alternatives in a 2 × C Contingency Table , 1980 .

[16]  Marcel A. Croon,et al.  Latent class analysis with ordered latent classe , 1990 .

[17]  Alan Agresti,et al.  Bayesian and Maximum Likelihood Approaches to Order-Restricted Inference for Models for Ordinal Categorical Data , 1986 .

[18]  L. A. Goodman Simple Models for the Analysis of Association in Cross-Classifications Having Ordered Categories , 1979 .

[19]  The Order-Restricted RC Model for Ordered Contingency Tables: Estimation and Testing for Fit , 1991 .

[20]  S. Haberman Analysis of qualitative data , 1978 .

[21]  Tim B. Swartz,et al.  Bayesian Analysis of Stochastically Ordered Distributions of Categorical Variables , 1997 .

[22]  A. Agresti,et al.  Order-restricted tests for stratified comparisons of binomial proportions. , 1996, Biometrics.

[23]  D. Rubin,et al.  Statistical Analysis with Missing Data , 1988 .

[24]  Clifford C. Clogg,et al.  Some Models for the Analysis of Association in Multiway Cross-Classifications Having Ordered Categories , 1982 .

[25]  Shelby J. Haberman,et al.  The analysis of multivariate contingency tables by restricted canonical and restricted association models , 1988 .

[26]  R. Dykstra,et al.  Duality of I Projections and Maximum Likelihood Estimation for Log-Linear Models Under Cone Constraints , 1988 .

[27]  J. McDonald,et al.  The fitting of parameter-constrained demographic models , 1997 .

[28]  G. Koch,et al.  Analysis of categorical data by linear models. , 1969, Biometrics.

[29]  A. Agresti,et al.  Simultaneously Modeling Joint and Marginal Distributions of Multivariate Categorical Responses , 1994 .

[30]  Marcel A. Croon,et al.  Investigating Mokken scalability of dichotomous items by means of ordinal latent class analysis , 1991 .

[31]  Jeroen K. Vermunt,et al.  Log-Linear Models for Event Histories , 1997 .

[32]  Joseph L Schafer,et al.  Analysis of Incomplete Multivariate Data , 1997 .

[33]  F. T. Wright,et al.  Order restricted statistical inference , 1988 .