Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries.

Solid polymer electrolyte (SPE) membranes are a critical component of high specific energy rechargeable Li-metal polymer (LMP) batteries. SPEs exhibit low volatility and thus increase the safety of Li-based batteries compared to current state-of-the-art Li-ion batteries that use flammable small-molecule electrolytes. However, most SPEs exhibit low ionic conductivity at room temperature, and often allow the growth of lithium dendrites that short-circuit the batteries. Both of these deficiencies are significant barriers to the commercialization of LMP batteries. Herein we report a cross-linked polyethylene/poly(ethylene oxide) SPE with both high ionic conductivity (>1.0 × 10(-4) S/cm at 25 °C) and excellent resistance to dendrite growth. It has been proposed that SPEs with shear moduli of the same order of magnitude as lithium could be used to suppress dendrite growth, leading to increased lifetime and safety for LMP batteries. In contrast to the theoretical predictions, the low-modulus (G' ≈ 1.0 × 10(5) Pa at 90 °C) cross-linked SPEs reported herein exhibit remarkable dendrite growth resistance. These results suggest that a high-modulus SPE is not a requirement for the control of dendrite proliferation.

[1]  Mitch Jacoby,et al.  Safer Lithium-Ion Batteries , 2014 .

[2]  T. Lodge,et al.  High-modulus, high-conductivity nanostructured polymer electrolyte membranes via polymerization-induced phase separation. , 2014, Nano letters.

[3]  L. Archer,et al.  Stability Analysis of Electrodeposition across a Structured Electrolyte with Immobilized Anions , 2014 .

[4]  E. Kramer,et al.  Allyl Glycidyl Ether-Based Polymer Electrolytes for Room Temperature Lithium Batteries , 2013 .

[5]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[6]  Robert O. Ritchie,et al.  Nanocomposites of Titanium Dioxide and Polystyrene-Poly(ethylene oxide) Block Copolymer as Solid-State Electrolytes for Lithium Metal Batteries , 2013 .

[7]  Xiangming He,et al.  Macromolecule plasticized interpenetrating structure solid state polymer electrolyte for lithium ion batteries , 2012 .

[8]  B. Jang,et al.  Reviving rechargeable lithium metal batteries: enabling next-generation high-energy and high-power cells , 2012 .

[9]  A. Hexemer,et al.  Resolution of the Modulus versus Adhesion Dilemma in Solid Polymer Electrolytes for Rechargeable Lithium Metal Batteries , 2012 .

[10]  P. Kohl,et al.  Dendrite-Free Electrodeposition and Reoxidation of Lithium-Sodium Alloy for Metal-Anode Battery , 2011 .

[11]  Tao Zhang,et al.  Effect of co-doping nano-silica filler and N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide into polymer electrolyte on Li dendrite formation in Li/poly(ethylene oxide)-Li(CF3SO2)2N/Li , 2011 .

[12]  T. Endo,et al.  Preparation and properties of ionic‐liquid‐containing poly(ethylene glycol)‐based networked polymer films having lithium salt structures , 2011 .

[13]  Hong Li,et al.  Thermodynamic analysis on energy densities of batteries , 2011 .

[14]  N. Imanishi,et al.  Lithium Dendrite Formation in Li/Poly(ethylene oxide)–Lithium Bis(trifluoromethanesulfonyl)imide and N-Methyl-N-propylpiperidinium Bis(trifluoromethanesulfonyl)imide/Li Cells , 2010 .

[15]  Tao Zhang,et al.  Effect of nano-silica filler in polymer electrolyte on Li dendrite formation in Li/poly(ethylene oxide)–Li(CF3SO2)2N/Li , 2010 .

[16]  Martin Winter,et al.  UV cross-linked, lithium-conducting ternary polymer electrolytes containing ionic liquids , 2010 .

[17]  Dong Wook Kim,et al.  Enhanced ionic conductivity of intrinsic solid polymer electrolytes using multi-armed oligo(ethylene oxide) plasticizers , 2010 .

[18]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[19]  Paul F. Mutolo,et al.  Tunable high performance cross-linked alkaline anion exchange membranes for fuel cell applications. , 2010, Journal of the American Chemical Society.

[20]  J. Goodenough,et al.  Challenges for Rechargeable Li Batteries , 2010 .

[21]  Kiyosei Takasu,et al.  Auto-tandem catalysis: a single catalyst activating mechanistically distinct reactions in a single reactor. , 2009, Chemistry.

[22]  M. Winter,et al.  Polymer electrolyte for lithium batteries based on photochemically crosslinked poly(ethylene oxide) and ionic liquid , 2008 .

[23]  M. Armand,et al.  Building better batteries , 2008, Nature.

[24]  Eric D. Wetzel,et al.  Electrochemical and mechanical behavior in mechanically robust solid polymer electrolytes for use in multifunctional structural batteries , 2007 .

[25]  Moon Jeong Park,et al.  Effect of molecular weight on the mechanical and electrical properties of block copolymer electrolytes , 2007 .

[26]  Jung-Ki Park,et al.  Highly ion-conductive solid polymer electrolytes based on polyethylene non-woven matrix , 2006 .

[27]  J. Tarascon,et al.  Lithium metal stripping/plating mechanisms studies: A metallurgical approach , 2006 .

[28]  M. Ishikawa,et al.  Pretreatment of Li metal anode with electrolyte additive for enhancing Li cycleability , 2005 .

[29]  Charles W. Monroe,et al.  The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces , 2005 .

[30]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[31]  H. Ota,et al.  Characterization of Lithium Electrode in Lithium Imides/Ethylene Carbonate, and Cyclic Ether Electrolytes I. Surface Morphology and Lithium Cycling Efficiency , 2004 .

[32]  J. Kerr,et al.  Synthesis and Characterization of Network Type Single Ion Conductors , 2004 .

[33]  T. Ono,et al.  Investigation on solvent-free solid polymer electrolytes for advanced lithium batteries and their performance , 2003 .

[34]  Minoru Inaba,et al.  Effects of Some Organic Additives on Lithium Deposition in Propylene Carbonate , 2002 .

[35]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[36]  M. Rosso,et al.  Onset of dendritic growth in lithium/polymer cells , 2001 .

[37]  Noboru Oyama,et al.  Inhibition effect of covalently cross-linked gel electrolytes on lithium dendrite formation , 2001 .

[38]  Noboru Oyama,et al.  Inhibition effects of polyacrylonitrile gel electrolytes on lithium dendrite formation , 1999 .

[39]  Toshiyuki Watanabe,et al.  High Ionic Conductivity of Polyether-Based Network Polymer Electrolytes with Hyperbranched Side Chains , 1999 .

[40]  Barbara Laïk,et al.  Ion–ion interactions and lithium stability in a crosslinked PEO containing lithium salts , 1998 .

[41]  M. Watanabe,et al.  Network Polymer Electrolytes with Free Chain Ends as Internal Plasticizer , 1998 .

[42]  A. Zanelli,et al.  Reliability of lithium batteries with crosslinked polymer electrolytes , 1996 .

[43]  M. Watanabe,et al.  Effects of network structures and incorporated salt species on electrochemical properties of polyether-based polymer electrolytes , 1995 .

[44]  M. Armand,et al.  Electrochemical behavior of lithium electrolytes based on new polyether networks , 1994 .

[45]  K. G. Honnell,et al.  Observation of a reaction front in the bulk catalytic hydrogenation of a polyolefin , 1992 .

[46]  M. Armand,et al.  A new polymer network for ionic conduction , 1992 .

[47]  J. Chazalviel,et al.  Electrochemical aspects of the generation of ramified metallic electrodeposits. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[48]  M. Morita,et al.  POLARIZATION BEHAVIOR OF LITHIUM ELECTRODE IN SOLID ELECTROLYTES CONSISTING OF A POLY(ETHYLENE OXIDE)-GRAFTED POLYMER , 1990 .

[49]  Lithium Electrode Morphology during Cycling in Lithium Cells , 1988 .

[50]  Michel Armand,et al.  Polymer solid electrolytes - an overview , 1983 .

[51]  M. Armand,et al.  Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts , 1983 .

[52]  P. V. Wright,et al.  Complexes of alkali metal ions with poly(ethylene oxide) , 1973 .