Accuracy threshold for concatenated error detection in one dimension

Estimates of the quantum accuracy threshold often tacitly assume that it is possible to interact arbitrary pairs of qubits in a quantum computer with a failure rate that is independent of the distance between them. None of the many physical systems that are candidates for quantum computing possess this property. Here we study the performance of a concatenated error-detection code in a system that permits only nearest-neighbor interactions in one dimension. We make use of a new message-passing scheme that maximizes the number of errors that can be reliably corrected by the code. Our numerical results indicate that arbitrarily accurate universal quantum computation is possible if the probability of failure of each elementary physical operation is below approximately 10^{-5}. This threshold is three orders of magnitude lower than the highest known.

[1]  A. Stephens,et al.  Message passing in fault-tolerant quantum error correction , 2008, 0806.2188.

[2]  Panos Aliferis,et al.  Fibonacci scheme for fault-tolerant quantum computation , 2007, 0709.3603.

[3]  S. Simon,et al.  Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.

[4]  R. Raussendorf,et al.  Topological fault-tolerance in cluster state quantum computation , 2007, quant-ph/0703143.

[5]  A. Fowler,et al.  Long-range coupling and scalable architecture for superconducting flux qubits , 2007, cond-mat/0702620.

[6]  A. Fowler,et al.  Universal fault tolerant quantum computation on bilinear nearest neighbor arrays , 2007, Quantum Inf. Comput..

[7]  R. Raussendorf,et al.  Fault-tolerant quantum computation with high threshold in two dimensions. , 2006, Physical review letters.

[8]  Andrew W. Cross,et al.  Subsystem fault tolerance with the Bacon-Shor code. , 2006, Physical review letters.

[9]  Susan Shannon,et al.  Trends in Quantum Computing Research , 2006 .

[10]  D. Poulin Optimal and efficient decoding of concatenated quantum block codes , 2006, quant-ph/0606126.

[11]  D. DiVincenzo,et al.  Noise threshold for a fault-tolerant two-dimensional lattice architecture , 2006, Quantum Inf. Comput..

[12]  Jacob M. Taylor,et al.  Fault-tolerant architecture for quantum computation using electrically controlled semiconductor spins , 2005 .

[13]  A. Fowler,et al.  Two-dimensional architectures for donor-based quantum computing , 2005, quant-ph/0506198.

[14]  D. Bacon Operator quantum error-correcting subsystems for self-correcting quantum memories , 2005, quant-ph/0506023.

[15]  J. Preskill,et al.  Quantum accuracy threshold for concatenated distance-3 codes , 2005, Quantum Inf. Comput..

[16]  Heng Fan,et al.  Threshold error penalty for fault-tolerant quantum computation with nearest neighbor communication , 2004, IEEE Transactions on Nanotechnology.

[17]  E. Knill Quantum computing with realistically noisy devices , 2004, Nature.

[18]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[19]  Simon J. Devitt,et al.  Implementation of Shor's algorithm on a linear nearest neighbour qubit array , 2004, Quantum Inf. Comput..

[20]  P. Zoller,et al.  Quantum computing with atomic Josephson junction arrays , 2003, quant-ph/0306085.

[21]  G. J. Milburn,et al.  Charge-based quantum computing using single donors in semiconductors , 2003, cond-mat/0306235.

[22]  M. Feng,et al.  Spin-based quantum gating with semiconductor quantum dots by bichromatic radiation method , 2003, quant-ph/0304169.

[23]  P. Knight,et al.  Quantum computation with a one-dimensional optical lattice. , 2003, Physical review letters.

[24]  A. Steane Overhead and noise threshold of fault-tolerant quantum error correction , 2002, quant-ph/0207119.

[25]  Fausto Rossi,et al.  Semiconductor-based geometrical quantum gates , 2002, quant-ph/0207019.

[26]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[27]  T. Spiller,et al.  Two-electron quantum dots as scalable qubits , 2002, quant-ph/0206075.

[28]  G. Kurizki,et al.  Scalable solid-state quantum processor using subradiant two-atom states. , 2002, Physical review letters.

[29]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[30]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[31]  Kang L. Wang,et al.  Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures , 1999, quant-ph/9905096.

[32]  D. Gottesman Fault-tolerant quantum computation with local gates , 1999, quant-ph/9903099.

[33]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[34]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.

[35]  A. Kitaev,et al.  Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[36]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[37]  A. Steane Active Stabilization, Quantum Computation, and Quantum State Synthesis , 1996, quant-ph/9611027.