Bio-Hybrid Micro/Nanodevices Powered by Flagellar Motor: Challenges and Strategies

Molecular motors, which are precision engineered by nature, offer exciting possibilities for bio-hybrid engineered systems. They could enable real applications ranging from micro/nano fluidics, to biosensing, to medical diagnoses. This review describes the fundamental biological insights and fascinating potentials of these remarkable sensing and actuation machines, in particular, bacterial flagellar motors, as well as their engineering perspectives with regard to applications in bio-engineered hybrid systems.

[1]  Peter J. Tarcha,et al.  Polymers for Controlled Drug Delivery , 1990 .

[2]  H. Craighead,et al.  Powering an inorganic nanodevice with a biomolecular motor. , 2000, Science.

[3]  Jin-Woo Kim,et al.  Molecular Self‐Assembly of Multifunctional Nanoparticle Composites with Arbitrary Shapes and Functions: Challenges and Strategies , 2013 .

[4]  R. Deaton,et al.  Programmable Construction of Nanostructures: Assembly of Nanostructures with Various Nanocomponents. , 2012, IEEE Nanotechnology Magazine.

[5]  Jin-Woo Kim,et al.  Microscale hybrid devices powered by biological flagellar motors , 2006, IEEE Transactions on Automation Science and Engineering.

[6]  William B. Liechty,et al.  Polymers for drug delivery systems. , 2010, Annual review of chemical and biomolecular engineering.

[7]  Carlo D. Montemagno,et al.  Systematized Engineering of Biomotor‐Powered Hybrid Devices , 2004 .

[8]  E. Purcell Life at Low Reynolds Number , 2008 .

[9]  Carlo D. Montemagno,et al.  Lessons Learned from Engineering Biologically Active Hybrid Nano/Micro Devices , 2005 .

[10]  John M. Walker,et al.  Molecular Motors , 2007, Methods in Molecular Biology™.

[11]  Bacterial Flagella: Flagellar Motor , 2001 .

[12]  Russell Deaton,et al.  DNA-linked nanoparticle building blocks for programmable matter. , 2011, Angewandte Chemie.

[13]  Krzysztof Iniewski,et al.  Application of Bacterial Flagellar Motors in Microfluidic Systems , 2011 .

[14]  Lisbeth Illum,et al.  Polymers in Controlled Drug Delivery , 1988 .

[15]  Yoshiyuki Sowa,et al.  Bacterial flagellar motor , 2004, Quarterly Reviews of Biophysics.

[16]  Shin-Ichi Aizawa,et al.  Abrupt changes in flagellar rotation observed by laser dark-field microscopy , 1990, Nature.

[17]  M. Manson Dynamic motors for bacterial flagella , 2010, Proceedings of the National Academy of Sciences.

[18]  William S. Ryu,et al.  Real-Time Imaging of Fluorescent Flagellar Filaments , 2000, Journal of bacteriology.

[19]  Jacob J. Schmidt,et al.  Engineering Issues in the Fabrication of a Hybrid Nano-Propeller System Powered by F1-ATPase , 2001 .

[20]  Howard C. Berg,et al.  Rapid rotation of flagellar bundles in swimming bacteria , 1987, Nature.

[21]  Célia M. Silveira,et al.  Nitrite Biosensing via Selective Enzymes—A Long but Promising Route , 2010, Sensors.

[22]  Hengyu Wang,et al.  Adhesion Study of Escherichia coli Cells on Nano-/Microtextured Surfaces in a Microfluidic System , 2008, IEEE Transactions on Nanotechnology.

[23]  H. Berg,et al.  Absence of a barrier to backwards rotation of the bacterial flagellar motor demonstrated with optical tweezers. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Li Daoliang,et al.  Electrochemical and Other Methods for Detection and Determination of Dissolved Nitrite: A Review , 2015, International Journal of Electrochemical Science.

[25]  H. Berg The rotary motor of bacterial flagella. , 2003, Annual review of biochemistry.

[26]  B. Fischer Lessons Learned. , 2016, Schizophrenia bulletin.

[27]  C. Montemagno,et al.  Engineering hybrid nano-devices powered by the F1-ATPase biomolecular motor , 2005 .

[28]  Steve Tung,et al.  Hybrid flagellar motor/MEMS-based TNT detection system , 2006, SPIE Defense + Commercial Sensing.

[29]  G Oster,et al.  Why Is the Mechanical Efficiency of F1-ATPase So High? , 2000, Journal of bioenergetics and biomembranes.

[30]  Ajay P. Malshe,et al.  Chemo-sensitivity and reliability of flagellar rotary motor in a MEMS microfluidic actuation system , 2006 .

[31]  R. Macnab,et al.  Flagella and motility , 1996 .

[32]  P. Boyer The ATP synthase--a splendid molecular machine. , 1997, Annual review of biochemistry.

[33]  Howard C. Berg,et al.  E. coli in Motion , 2003 .

[34]  S. Tung,et al.  Putting E. coli to good use , 2008, IEEE Nanotechnology Magazine.